Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    Industrial EdgeSign: NAS-Optimized Real-Time Hand Gesture Recognition for Operator Communication in Smart Factories

    Meixi Chu1, Xinyu Jiang1,*, Yushu Tao2

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071533 - 09 December 2025

    Abstract Industrial operators need reliable communication in high-noise, safety-critical environments where speech or touch input is often impractical. Existing gesture systems either miss real-time deadlines on resource-constrained hardware or lose accuracy under occlusion, vibration, and lighting changes. We introduce Industrial EdgeSign, a dual-path framework that combines hardware-aware neural architecture search (NAS) with large multimodal model (LMM) guided semantics to deliver robust, low-latency gesture recognition on edge devices. The searched model uses a truncated ResNet50 front end, a dimensional-reduction network that preserves spatiotemporal structure for tubelet-based attention, and localized Transformer layers tuned for on-device inference. To reduce… More >

  • Open Access

    ARTICLE

    Federated Learning for Vision-Based Applications in 6G Networks: A Simulation-Based Performance Study

    Manuel J. C. S. Reis1,*, Nishu Gupta2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4225-4243, 2025, DOI:10.32604/cmes.2025.073366 - 23 December 2025

    Abstract The forthcoming sixth generation (6G) of mobile communication networks is envisioned to be AI-native, supporting intelligent services and pervasive computing at unprecedented scale. Among the key paradigms enabling this vision, Federated Learning (FL) has gained prominence as a distributed machine learning framework that allows multiple devices to collaboratively train models without sharing raw data, thereby preserving privacy and reducing the need for centralized storage. This capability is particularly attractive for vision-based applications, where image and video data are both sensitive and bandwidth-intensive. However, the integration of FL with 6G networks presents unique challenges, including communication… More >

  • Open Access

    ARTICLE

    Trust-Aware AI-Enabled Edge Framework for Intelligent Traffic Control in Cyber-Physical Systems

    Khalid Haseeb1, Imran Qureshi2,*, Naveed Abbas1, Muhammad Ali3, Muhammad Arif Shah4, Qaisar Abbas2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4349-4362, 2025, DOI:10.32604/cmes.2025.072326 - 23 December 2025

    Abstract The rapid evolution of smart cities has led to the deployment of Cyber-Physical IoT Systems (CPS-IoT) for real-time monitoring, intelligent decision-making, and efficient resource management, particularly in intelligent transportation and vehicular networks. Edge intelligence plays a crucial role in these systems by enabling low-latency processing and localized optimization for dynamic, data-intensive, and vehicular environments. However, challenges such as high computational overhead, uneven load distribution, and inefficient utilization of communication resources significantly hinder scalability and responsiveness. Our research presents a robust framework that integrates artificial intelligence and edge-level traffic prediction for CPS-IoT systems. Distributed computing for More >

  • Open Access

    ARTICLE

    EdgeGuard-IoT: 6G-Enabled Edge Intelligence for Secure Federated Learning and Adaptive Anomaly Detection in Industry 5.0

    Mohammed Naif Alatawi*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 695-727, 2025, DOI:10.32604/cmc.2025.066606 - 29 August 2025

    Abstract Adaptive robust secure framework plays a vital role in implementing intelligent automation and decentralized decision making of Industry 5.0. Latency, privacy risks and the complexity of industrial networks have been preventing attempts at traditional cloud-based learning systems. We demonstrate that, to overcome these challenges, for instance, the EdgeGuard-IoT framework, a 6G edge intelligence framework enhancing cybersecurity and operational resilience of the smart grid, is needed on the edge to integrate Secure Federated Learning (SFL) and Adaptive Anomaly Detection (AAD). With ultra-reliable low latency communication (URLLC) of 6G, artificial intelligence-based network orchestration, and massive machine type… More >

  • Open Access

    ARTICLE

    Integrating Edge Intelligence with Blockchain-Driven Secured IoT Healthcare Optimization Model

    Khulud Salem Alshudukhi1, Mamoona Humayun2,*, Ghadah Naif Alwakid1

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1973-1986, 2025, DOI:10.32604/cmc.2025.063077 - 16 April 2025

    Abstract The Internet of Things (IoT) and edge computing have substantially contributed to the development and growth of smart cities. It handled time-constrained services and mobile devices to capture the observing environment for surveillance applications. These systems are composed of wireless cameras, digital devices, and tiny sensors to facilitate the operations of crucial healthcare services. Recently, many interactive applications have been proposed, including integrating intelligent systems to handle data processing and enable dynamic communication functionalities for crucial IoT services. Nonetheless, most solutions lack optimizing relaying methods and impose excessive overheads for maintaining devices’ connectivity. Alternatively, data More >

  • Open Access

    ARTICLE

    Real-Time Proportional-Integral-Derivative (PID) Tuning Based on Back Propagation (BP) Neural Network for Intelligent Vehicle Motion Control

    Liang Zhou1, Qiyao Hu1,2,3,*, Xianlin Peng4,5, Qianlong Liu6

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2375-2401, 2025, DOI:10.32604/cmc.2025.061894 - 16 April 2025

    Abstract Over 1.3 million people die annually in traffic accidents, and this tragic fact highlights the urgent need to enhance the intelligence of traffic safety and control systems. In modern industrial and technological applications and collaborative edge intelligence, control systems are crucial for ensuring efficiency and safety. However, deficiencies in these systems can lead to significant operational risks. This paper uses edge intelligence to address the challenges of achieving target speeds and improving efficiency in vehicle control, particularly the limitations of traditional Proportional-Integral-Derivative (PID) controllers in managing nonlinear and time-varying dynamics, such as varying road conditions… More >

  • Open Access

    ARTICLE

    A Blockchain-Assisted Distributed Edge Intelligence for Privacy-Preserving Vehicular Networks

    Muhammad Firdaus1, Harashta Tatimma Larasati2, Kyung-Hyune Rhee3,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 2959-2978, 2023, DOI:10.32604/cmc.2023.039487 - 08 October 2023

    Abstract The enormous volume of heterogeneous data from various smart device-based applications has growingly increased a deeply interlaced cyber-physical system. In order to deliver smart cloud services that require low latency with strong computational processing capabilities, the Edge Intelligence System (EIS) idea is now being employed, which takes advantage of Artificial Intelligence (AI) and Edge Computing Technology (ECT). Thus, EIS presents a potential approach to enforcing future Intelligent Transportation Systems (ITS), particularly within a context of a Vehicular Network (VNets). However, the current EIS framework meets some issues and is conceivably vulnerable to multiple adversarial attacks… More >

  • Open Access

    REVIEW

    Edge Intelligence with Distributed Processing of DNNs: A Survey

    Sizhe Tang1, Mengmeng Cui1,*, Lianyong Qi2, Xiaolong Xu1

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 5-42, 2023, DOI:10.32604/cmes.2023.023684 - 05 January 2023

    Abstract With the rapid development of deep learning, the size of data sets and deep neural networks (DNNs) models are also booming. As a result, the intolerable long time for models’ training or inference with conventional strategies can not meet the satisfaction of modern tasks gradually. Moreover, devices stay idle in the scenario of edge computing (EC), which presents a waste of resources since they can share the pressure of the busy devices but they do not. To address the problem, the strategy leveraging distributed processing has been applied to load computation tasks from a single… More >

Displaying 1-10 on page 1 of 8. Per Page