Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (299)
  • Open Access

    ARTICLE

    A Hybrid Approach to Software Testing Efficiency: Stacked Ensembles and Deep Q-Learning for Test Case Prioritization and Ranking

    Anis Zarrad1, Thomas Armstrong2, Jaber Jemai3,*

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072768 - 12 January 2026

    Abstract Test case prioritization and ranking play a crucial role in software testing by improving fault detection efficiency and ensuring software reliability. While prioritization selects the most relevant test cases for optimal coverage, ranking further refines their execution order to detect critical faults earlier. This study investigates machine learning techniques to enhance both prioritization and ranking, contributing to more effective and efficient testing processes. We first employ advanced feature engineering alongside ensemble models, including Gradient Boosted, Support Vector Machines, Random Forests, and Naive Bayes classifiers to optimize test case prioritization, achieving an accuracy score of 0.98847More >

  • Open Access

    ARTICLE

    Suppression of Dry-Coupled Rubber Layer Interference in Ultrasonic Thickness Measurement: A Comparative Study of Empirical Mode Decomposition Variants

    Weichen Wang1, Shaofeng Wang1, Wenjing Liu1,*, Luncai Zhou2, Erqing Zhang1, Ting Gao3, Grigory Petrishin4

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.071278 - 08 January 2026

    Abstract In dry-coupled ultrasonic thickness measurement, thick rubber layers introduce high-amplitude parasitic echoes that obscure defect signals and degrade thickness accuracy. Existing methods struggle to resolve overlap-ping echoes under variable coupling conditions and non-stationary noise. This study proposes a novel dual-criterion framework integrating energy contribution and statistical impulsivity metrics to isolate specimen re-flections from coupling-layer interference. By decomposing A-scan signals into Intrinsic Mode Functions (IMFs), the framework employs energy contribution thresholds (>85%) and kurtosis indices (>3) to autonomously select IMFs containing valid specimen echoes. Hybrid time-frequency thresholding further suppresses interference through amplitude filtering and spectral focusing. More >

  • Open Access

    ARTICLE

    Advanced AI-Driven Cybersecurity Solutions: Intelligent Threat Detection, Explainability, and Adversarial Resilience

    Kirubavathi Ganapathiyappan1,*, Kiruba Marimuthu Eswaramoorthy1, Abi Thangamuthu Shanthamani1, Aksaya Venugopal1, Asita Pon Bhavya Iyyappan1, Thilaga Manickam1, Ateeq Ur Rehman2,*, Habib Hamam3,4,5,6

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-31, 2026, DOI:10.32604/cmc.2025.070067 - 09 December 2025

    Abstract The growing use of Portable Document Format (PDF) files across various sectors such as education, government, and business has inadvertently turned them into a major target for cyberattacks. Cybercriminals take advantage of the inherent flexibility and layered structure of PDFs to inject malicious content, often employing advanced obfuscation techniques to evade detection by traditional signature-based security systems. These conventional methods are no longer adequate, especially against sophisticated threats like zero-day exploits and polymorphic malware. In response to these challenges, this study introduces a machine learning-based detection framework specifically designed to combat such threats. Central to… More >

  • Open Access

    ARTICLE

    PhishNet: A Real-Time, Scalable Ensemble Framework for Smishing Attack Detection Using Transformers and LLMs

    Abeer Alhuzali1,*, Qamar Al-Qahtani1, Asmaa Niyazi1, Lama Alshehri1, Fatemah Alharbi2

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.069491 - 10 November 2025

    Abstract The surge in smishing attacks underscores the urgent need for robust, real-time detection systems powered by advanced deep learning models. This paper introduces PhishNet, a novel ensemble learning framework that integrates transformer-based models (RoBERTa) and large language models (LLMs) (GPT-OSS 120B, LLaMA3.3 70B, and Qwen3 32B) to enhance smishing detection performance significantly. To mitigate class imbalance, we apply synthetic data augmentation using T5 and leverage various text preprocessing techniques. Our system employs a dual-layer voting mechanism: weighted majority voting among LLMs and a final ensemble vote to classify messages as ham, spam, or smishing. Experimental More >

  • Open Access

    ARTICLE

    Advances in Machine Learning for Explainable Intrusion Detection Using Imbalance Datasets in Cybersecurity with Harris Hawks Optimization

    Amjad Rehman1,*, Tanzila Saba1, Mona M. Jamjoom2, Shaha Al-Otaibi3, Muhammad I. Khan1

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068958 - 10 November 2025

    Abstract Modern intrusion detection systems (MIDS) face persistent challenges in coping with the rapid evolution of cyber threats, high-volume network traffic, and imbalanced datasets. Traditional models often lack the robustness and explainability required to detect novel and sophisticated attacks effectively. This study introduces an advanced, explainable machine learning framework for multi-class IDS using the KDD99 and IDS datasets, which reflects real-world network behavior through a blend of normal and diverse attack classes. The methodology begins with sophisticated data preprocessing, incorporating both RobustScaler and QuantileTransformer to address outliers and skewed feature distributions, ensuring standardized and model-ready inputs.… More >

  • Open Access

    ARTICLE

    DriftXMiner: A Resilient Process Intelligence Approach for Safe and Transparent Detection of Incremental Concept Drift in Process Mining

    Puneetha B. H.1,*, Manoj Kumar M. V.2,*, Prashanth B. S.2, Piyush Kumar Pareek3

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-33, 2026, DOI:10.32604/cmc.2025.067706 - 10 November 2025

    Abstract Processes supported by process-aware information systems are subject to continuous and often subtle changes due to evolving operational, organizational, or regulatory factors. These changes, referred to as incremental concept drift, gradually alter the behavior or structure of processes, making their detection and localization a challenging task. Traditional process mining techniques frequently assume process stationarity and are limited in their ability to detect such drift, particularly from a control-flow perspective. The objective of this research is to develop an interpretable and robust framework capable of detecting and localizing incremental concept drift in event logs, with a… More >

  • Open Access

    ARTICLE

    CEOE-Net: Chaotic Evolution Algorithm-Based Optimized Ensemble Framework Enhanced with Dual-Attention for Alzheimer’s Diagnosis

    Huihui Yang1, Saif Ur Rehman Khan2,*, Omair Bilal2, Chao Chen1,*, Ming Zhao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2401-2434, 2025, DOI:10.32604/cmes.2025.072148 - 26 November 2025

    Abstract Detecting Alzheimer’s disease is essential for patient care, as an accurate diagnosis influences treatment options. Classifying dementia from non-dementia in brain MRIs is challenging due to features such as hippocampal atrophy, while manual diagnosis is susceptible to error. Optimal computer-aided diagnosis (CAD) systems are essential for improving accuracy and reducing misclassification risks. This study proposes an optimized ensemble method (CEOE-Net) that initiates with the selection of pre-trained models, including DenseNet121, ResNet50V2, and ResNet152V2 for unique feature extraction. Each selected model is enhanced with the inclusion of a channel attention (CA) block to improve the feature… More >

  • Open Access

    ARTICLE

    Efficient Time-Series Feature Extraction and Ensemble Learning for Appliance Categorization Using Smart Meter Data

    Ugur Madran, Saeed Mian Qaisar*, Duygu Soyoglu

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1969-1992, 2025, DOI:10.32604/cmes.2025.072024 - 26 November 2025

    Abstract Recent advancements in smart-meter technology are transforming traditional power systems into intelligent smart grids. It offers substantial benefits across social, environmental, and economic dimensions. To effectively realize these advantages, a fine-grained collection and analysis of smart meter data is essential. However, the high dimensionality and volume of such time-series present significant challenges, including increased computational load, data transmission overhead, latency, and complexity in real-time analysis. This study proposes a novel, computationally efficient framework for feature extraction and selection tailored to smart meter time-series data. The approach begins with an extensive offline analysis, where features are… More >

  • Open Access

    ARTICLE

    Quantum Genetic Algorithm Based Ensemble Learning for Detection of Atrial Fibrillation Using ECG Signals

    Yazeed Alkhrijah1, Marwa Fahim2, Syed Muhammad Usman3, Qasim Mehmood3, Shehzad Khalid4,5,*, Mohamad A. Alawad1, Haya Aldossary6

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2339-2355, 2025, DOI:10.32604/cmes.2025.071512 - 26 November 2025

    Abstract Atrial Fibrillation (AF) is a cardiac disorder characterized by irregular heart rhythms, typically diagnosed using Electrocardiogram (ECG) signals. In remote regions with limited healthcare personnel, automated AF detection is extremely important. Although recent studies have explored various machine learning and deep learning approaches, challenges such as signal noise and subtle variations between AF and other cardiac rhythms continue to hinder accurate classification. In this study, we propose a novel framework that integrates robust preprocessing, comprehensive feature extraction, and an ensemble classification strategy. In the first step, ECG signals are divided into equal-sized segments using a… More >

  • Open Access

    ARTICLE

    Detecting Vehicle Mechanical Defects Using an Ensemble Deep Learning Model with Mel Frequency Cepstral Coefficients from Acoustic Data

    Mudasir Ali1, Muhammad Faheem Mushtaq2, Urooj Akram2, Nagwan Abdel Samee3,*, Mona M. Jamjoom4, Imran Ashraf5,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 1863-1901, 2025, DOI:10.32604/cmes.2025.070389 - 26 November 2025

    Abstract Differentiating between regular and abnormal noises in machine-generated sounds is a crucial but difficult problem. For accurate audio signal classification, suitable and efficient techniques are needed, particularly machine learning approaches for automated classification. Due to the dynamic and diverse representative characteristics of audio data, the probability of achieving high classification accuracy is relatively low and requires further research efforts. This study proposes an ensemble model based on the LeNet and hierarchical attention mechanism (HAM) models with MFCC features to enhance the models’ capacity to handle bias. Additionally, CNNs, bidirectional LSTM (BiLSTM), CRNN, LSTM, capsule network More >

Displaying 1-10 on page 1 of 299. Per Page