Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (236)
  • Open Access

    ARTICLE

    Optimizing Optical Fiber Faults Detection: A Comparative Analysis of Advanced Machine Learning Approaches

    Kamlesh Kumar Soothar1,2, Yuanxiang Chen1,2,*, Arif Hussain Magsi3, Cong Hu1, Hussain Shah1

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2697-2721, 2024, DOI:10.32604/cmc.2024.049607

    Abstract Efficient optical network management poses significant importance in backhaul and access network communication for preventing service disruptions and ensuring Quality of Service (QoS) satisfaction. The emerging faults in optical networks introduce challenges that can jeopardize the network with a variety of faults. The existing literature witnessed various partial or inadequate solutions. On the other hand, Machine Learning (ML) has revolutionized as a promising technique for fault detection and prevention. Unlike traditional fault management systems, this research has three-fold contributions. First, this research leverages the ML and Deep Learning (DL) multi-classification system and evaluates their accuracy… More >

  • Open Access

    ARTICLE

    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing… More >

  • Open Access

    ARTICLE

    Predicting Age and Gender in Author Profiling: A Multi-Feature Exploration

    Aiman1, Muhammad Arshad1,*, Bilal Khan1, Sadique Ahmad2,*, Muhammad Asim2,3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3333-3353, 2024, DOI:10.32604/cmc.2024.049254

    Abstract Author Profiling (AP) is a subsection of digital forensics that focuses on the detection of the author’s personal information, such as age, gender, occupation, and education, based on various linguistic features, e.g., stylistic, semantic, and syntactic. The importance of AP lies in various fields, including forensics, security, medicine, and marketing. In previous studies, many works have been done using different languages, e.g., English, Arabic, French, etc. However, the research on Roman Urdu is not up to the mark. Hence, this study focuses on detecting the author’s age and gender based on Roman Urdu text messages.… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Ensemble Learning Approach for Enhancing Accuracy and Sustainability in Wind Power Forecasting

    Farhan Ullah1, Xuexia Zhang1,*, Mansoor Khan2, Muhammad Abid3,*, Abdullah Mohamed4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 3373-3395, 2024, DOI:10.32604/cmc.2024.048656

    Abstract Accurate wind power forecasting is critical for system integration and stability as renewable energy reliance grows. Traditional approaches frequently struggle with complex data and non-linear connections. This article presents a novel approach for hybrid ensemble learning that is based on rigorous requirements engineering concepts. The approach finds significant parameters influencing forecasting accuracy by evaluating real-time Modern-Era Retrospective Analysis for Research and Applications (MERRA2) data from several European Wind farms using in-depth stakeholder research and requirements elicitation. Ensemble learning is used to develop a robust model, while a temporal convolutional network handles time-series complexities and data… More >

  • Open Access

    ARTICLE

    Deep-Ensemble Learning Method for Solar Resource Assessment of Complex Terrain Landscapes

    Lifeng Li1, Zaimin Yang1, Xiongping Yang1, Jiaming Li2, Qianyufan Zhou3,*, Ping Yang3

    Energy Engineering, Vol.121, No.5, pp. 1329-1346, 2024, DOI:10.32604/ee.2023.046447

    Abstract As the global demand for renewable energy grows, solar energy is gaining attention as a clean, sustainable energy source. Accurate assessment of solar energy resources is crucial for the siting and design of photovoltaic power plants. This study proposes an integrated deep learning-based photovoltaic resource assessment method. Ensemble learning and deep learning methods are fused for photovoltaic resource assessment for the first time. The proposed method combines the random forest, gated recurrent unit, and long short-term memory to effectively improve the accuracy and reliability of photovoltaic resource assessment. The proposed method has strong adaptability and More >

  • Open Access

    ARTICLE

    Securing Cloud-Encrypted Data: Detecting Ransomware-as-a-Service (RaaS) Attacks through Deep Learning Ensemble

    Amardeep Singh1, Hamad Ali Abosaq2, Saad Arif3, Zohaib Mushtaq4,*, Muhammad Irfan5, Ghulam Abbas6, Arshad Ali7, Alanoud Al Mazroa8

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 857-873, 2024, DOI:10.32604/cmc.2024.048036

    Abstract Data security assurance is crucial due to the increasing prevalence of cloud computing and its widespread use across different industries, especially in light of the growing number of cybersecurity threats. A major and ever-present threat is Ransomware-as-a-Service (RaaS) assaults, which enable even individuals with minimal technical knowledge to conduct ransomware operations. This study provides a new approach for RaaS attack detection which uses an ensemble of deep learning models. For this purpose, the network intrusion detection dataset “UNSW-NB15” from the Intelligent Security Group of the University of New South Wales, Australia is analyzed. In the… More >

  • Open Access

    ARTICLE

    An Ingenious IoT Based Crop Prediction System Using ML and EL

    Shabana Ramzan1, Yazeed Yasin Ghadi2, Hanan Aljuaid3, Aqsa Mahmood1,*, Basharat Ali4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 183-199, 2024, DOI:10.32604/cmc.2024.047603

    Abstract Traditional farming procedures are time-consuming and expensive as based on manual labor. Farmers have no proper knowledge to select which crop is suitable to grow according to the environmental factors and soil characteristics. This is the main reason for the low yield of crops and the economic crisis in the agricultural sector of the different countries. The use of modern technologies such as the Internet of Things (IoT), machine learning, and ensemble learning can facilitate farmers to observe different factors such as soil electrical conductivity (EC), and environmental factors like temperature to improve crop yield.… More >

  • Open Access

    ARTICLE

    Uncertainty-Aware Physical Simulation of Neural Radiance Fields for Fluids

    Haojie Lian1, Jiaqi Wang1, Leilei Chen2,*, Shengze Li3, Ruochen Cao4, Qingyuan Hu5, Peiyun Zhao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 1143-1163, 2024, DOI:10.32604/cmes.2024.048549

    Abstract This paper presents a novel framework aimed at quantifying uncertainties associated with the 3D reconstruction of smoke from 2D images. This approach reconstructs color and density fields from 2D images using Neural Radiance Field (NeRF) and improves image quality using frequency regularization. The NeRF model is obtained via joint training of multiple artificial neural networks, whereby the expectation and standard deviation of density fields and RGB values can be evaluated for each pixel. In addition, customized physics-informed neural network (PINN) with residual blocks and two-layer activation functions are utilized to input the density fields of More >

  • Open Access

    ARTICLE

    Random Forest-Based Fatigue Reliability-Based Design Optimization for Aeroengine Structures

    Xue-Qin Li1, Lu-Kai Song2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 665-684, 2024, DOI:10.32604/cmes.2024.048445

    Abstract Fatigue reliability-based design optimization of aeroengine structures involves multiple repeated calculations of reliability degree and large-scale calls of implicit high-nonlinearity limit state function, leading to the traditional direct Monte Claro and surrogate methods prone to unacceptable computing efficiency and accuracy. In this case, by fusing the random subspace strategy and weight allocation technology into bagging ensemble theory, a random forest (RF) model is presented to enhance the computing efficiency of reliability degree; moreover, by embedding the RF model into multilevel optimization model, an efficient RF-assisted fatigue reliability-based design optimization framework is developed. Regarding the low-cycle More >

  • Open Access

    ARTICLE

    An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction

    Duy Quang Tran1, Huy Q. Tran2,*, Minh Van Nguyen3

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3585-3602, 2024, DOI:10.32604/cmc.2024.047760

    Abstract With the advancement of artificial intelligence, traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality. Traffic volume is an influential parameter for planning and operating traffic structures. This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems. A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process. The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal… More >

Displaying 11-20 on page 2 of 236. Per Page