Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Fake News Detection Based on Text-Modal Dominance and Fusing Multiple Multi-Model Clues

    Lifang Fu1, Huanxin Peng2,*, Changjin Ma2, Yuhan Liu2

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 4399-4416, 2024, DOI:10.32604/cmc.2024.047053

    Abstract In recent years, how to efficiently and accurately identify multi-model fake news has become more challenging. First, multi-model data provides more evidence but not all are equally important. Secondly, social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical. Unfortunately, existing approaches fail to handle these problems. This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues (TD-MMC), which utilizes three valuable multi-model clues: text-model importance, text-image complementary, and text-image inconsistency. TD-MMC is dominated by textural content and… More >

  • Open Access

    ARTICLE

    Degradation of FAK-targeting by proteolytic targeting chimera technology to inhibit the metastasis of hepatocellular carcinoma

    XINFENG ZHANG1,2,#, SHUANG LI2,#, MEIRU SONG1,2, YUE CHEN3, LIANGZHENG CHANG3, ZHERUI LIU4, HONGYUAN DAI3, YUTAO WANG4, GANGQI YANG3, YUN JIANG5,6,*, YINYING LU1,2,*

    Oncology Research, Vol.32, No.4, pp. 679-690, 2024, DOI:10.32604/or.2024.046231

    Abstract Liver cancer is a prevalent malignant cancer, ranking third in terms of mortality rate. Metastasis and recurrence primarily contribute to the high mortality rate of liver cancer. Hepatocellular carcinoma (HCC) has low expression of focal adhesion kinase (FAK), which increases the risk of metastasis and recurrence. Nevertheless, the efficacy of FAK phosphorylation inhibitors is currently limited. Thus, investigating the mechanisms by which FAK affects HCC metastasis to develop targeted therapies for FAK may present a novel strategy to inhibit HCC metastasis. This study examined the correlation between FAK expression and the prognosis of HCC. Additionally, we explored the impact of… More >

  • Open Access

    ARTICLE

    An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms

    Asma Hassan Alshehri*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2767-2786, 2024, DOI:10.32604/cmc.2023.046838

    Abstract Online review platforms are becoming increasingly popular, encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services. Using Sybil accounts, bot farms, and real account purchases, immoral actors demonize rivals and advertise their goods. Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years. The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones. This paper adopts a semi-supervised machine learning method to detect fake reviews on any website, among other things. Online reviews… More >

  • Open Access

    ARTICLE

    Local Adaptive Gradient Variance Attack for Deep Fake Fingerprint Detection

    Chengsheng Yuan1,2, Baojie Cui1,2, Zhili Zhou3, Xinting Li4,*, Qingming Jonathan Wu5

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 899-914, 2024, DOI:10.32604/cmc.2023.045854

    Abstract In recent years, deep learning has been the mainstream technology for fingerprint liveness detection (FLD) tasks because of its remarkable performance. However, recent studies have shown that these deep fake fingerprint detection (DFFD) models are not resistant to attacks by adversarial examples, which are generated by the introduction of subtle perturbations in the fingerprint image, allowing the model to make fake judgments. Most of the existing adversarial example generation methods are based on gradient optimization, which is easy to fall into local optimal, resulting in poor transferability of adversarial attacks. In addition, the perturbation added to the blank area of… More >

  • Open Access

    ARTICLE

    Fake News Classification: Past, Current, and Future

    Muhammad Usman Ghani Khan1, Abid Mehmood2, Mourad Elhadef2, Shehzad Ashraf Chaudhry2,3,*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2225-2249, 2023, DOI:10.32604/cmc.2023.038303

    Abstract The proliferation of deluding data such as fake news and phony audits on news web journals, online publications, and internet business apps has been aided by the availability of the web, cell phones, and social media. Individuals can quickly fabricate comments and news on social media. The most difficult challenge is determining which news is real or fake. Accordingly, tracking down programmed techniques to recognize fake news online is imperative. With an emphasis on false news, this study presents the evolution of artificial intelligence techniques for detecting spurious social media content. This study shows past, current, and possible methods that… More >

  • Open Access

    ARTICLE

    Fake News Detection Using Machine Learning and Deep Learning Methods

    Ammar Saeed1,*, Eesa Al Solami2

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 2079-2096, 2023, DOI:10.32604/cmc.2023.030551

    Abstract The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms. Some social media sources contribute to the propagation of fake news that has no real validity, but they accumulate over time and begin to appear in the feed of every consumer producing even more ambiguity. To sustain the value of social media, such stories must be distinguished from the true ones. As a result, an automated system is required to save time and money. The classification of fake news and misinformation from social media data… More >

  • Open Access

    ARTICLE

    Multi-Branch Deepfake Detection Algorithm Based on Fine-Grained Features

    Wenkai Qin1, Tianliang Lu1,*, Lu Zhang2, Shufan Peng1, Da Wan1

    CMC-Computers, Materials & Continua, Vol.77, No.1, pp. 467-490, 2023, DOI:10.32604/cmc.2023.042417

    Abstract With the rapid development of deepfake technology, the authenticity of various types of fake synthetic content is increasing rapidly, which brings potential security threats to people's daily life and social stability. Currently, most algorithms define deepfake detection as a binary classification problem, i.e., global features are first extracted using a backbone network and then fed into a binary classifier to discriminate true or false. However, the differences between real and fake samples are often subtle and local, and such global feature-based detection algorithms are not optimal in efficiency and accuracy. To this end, to enhance the extraction of forgery details… More >

  • Open Access

    ARTICLE

    Deep Fakes in Healthcare: How Deep Learning Can Help to Detect Forgeries

    Alaa Alsaheel, Reem Alhassoun, Reema Alrashed, Noura Almatrafi, Noura Almallouhi, Saleh Albahli*

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 2461-2482, 2023, DOI:10.32604/cmc.2023.040257

    Abstract With the increasing use of deep learning technology, there is a growing concern over creating deep fake images and videos that can potentially be used for fraud. In healthcare, manipulating medical images could lead to misdiagnosis and potentially life-threatening consequences. Therefore, the primary purpose of this study is to explore the use of deep learning algorithms to detect deep fake images by solving the problem of recognizing the handling of samples of cancer and other diseases. Therefore, this research proposes a framework that leverages state-of-the-art deep convolutional neural networks (CNN) and a large dataset of authentic and deep fake medical… More >

  • Open Access

    ARTICLE

    Deep Neural Network for Detecting Fake Profiles in Social Networks

    Daniyal Amankeldin1, Lyailya Kurmangaziyeva2, Ayman Mailybayeva2, Natalya Glazyrina1, Ainur Zhumadillayeva1,*, Nurzhamal Karasheva3

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 1091-1108, 2023, DOI:10.32604/csse.2023.039503

    Abstract This paper proposes a deep neural network (DNN) approach for detecting fake profiles in social networks. The DNN model is trained on a large dataset of real and fake profiles and is designed to learn complex features and patterns that distinguish between the two types of profiles. In addition, the present research aims to determine the minimum set of profile data required for recognizing fake profiles on Facebook and propose the deep convolutional neural network method for fake accounts detection on social networks, which has been developed using 16 features based on content-based and profile-based features. The results demonstrated that… More >

  • Open Access

    ARTICLE

    Fake News Encoder Classifier (FNEC) for Online Published News Related to COVID-19 Vaccines

    Asma Qaiser1, Saman Hina1, Abdul Karim Kazi1,*, Saad Ahmed2, Raheela Asif3

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 73-90, 2023, DOI:10.32604/iasc.2023.036784

    Abstract In the past few years, social media and online news platforms have played an essential role in distributing news content rapidly. Consequently. verification of the authenticity of news has become a major challenge. During the COVID-19 outbreak, misinformation and fake news were major sources of confusion and insecurity among the general public. In the first quarter of the year 2020, around 800 people died due to fake news relevant to COVID-19. The major goal of this research was to discover the best learning model for achieving high accuracy and performance. A novel case study of the Fake News Classification using… More >

Displaying 1-10 on page 1 of 37. Per Page