Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (64)
  • Open Access

    REVIEW

    Toward Robust Deepfake Defense: A Review of Deepfake Detection and Prevention Techniques in Images

    Ahmed Abdel-Wahab1, Mohammad Alkhatib2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-34, 2026, DOI:10.32604/cmc.2025.070010 - 09 December 2025

    Abstract Deepfake is a sort of fake media made by advanced AI methods like Generative Adversarial Networks (GANs). Deepfake technology has many useful uses in education and entertainment, but it also raises a lot of ethical, social, and security issues, such as identity theft, the dissemination of false information, and privacy violations. This study seeks to provide a comprehensive analysis of several methods for identifying and circumventing Deepfakes, with a particular focus on image-based Deepfakes. There are three main types of detection methods: classical, machine learning (ML) and deep learning (DL)-based, and hybrid methods. There are… More >

  • Open Access

    ARTICLE

    A Transformer-Based Deep Learning Framework with Semantic Encoding and Syntax-Aware LSTM for Fake Electronic News Detection

    Hamza Murad Khan1, Shakila Basheer2, Mohammad Tabrez Quasim3, Raja`a Al-Naimi4, Vijaykumar Varadarajan5, Anwar Khan1,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069327 - 10 November 2025

    Abstract With the increasing growth of online news, fake electronic news detection has become one of the most important paradigms of modern research. Traditional electronic news detection techniques are generally based on contextual understanding, sequential dependencies, and/or data imbalance. This makes distinction between genuine and fabricated news a challenging task. To address this problem, we propose a novel hybrid architecture, T5-SA-LSTM, which synergistically integrates the T5 Transformer for semantically rich contextual embedding with the Self-Attention-enhanced (SA) Long Short-Term Memory (LSTM). The LSTM is trained using the Adam optimizer, which provides faster and more stable convergence compared… More >

  • Open Access

    REVIEW

    A Comprehensive Review on File Containers-Based Image and Video Forensics

    Pengpeng Yang1,2,*, Chen Zhou1, Dasara Shullani2, Lanxi Liu1, Daniele Baracchi2

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2487-2526, 2025, DOI:10.32604/cmc.2025.069129 - 23 September 2025

    Abstract Images and videos play an increasingly vital role in daily life and are widely utilized as key evidentiary sources in judicial investigations and forensic analysis. Simultaneously, advancements in image and video processing technologies have facilitated the widespread availability of powerful editing tools, such as Deepfakes, enabling anyone to easily create manipulated or fake visual content, which poses an enormous threat to social security and public trust. To verify the authenticity and integrity of images and videos, numerous approaches have been proposed, which are primarily based on content analysis and their effectiveness is susceptible to interference… More >

  • Open Access

    ARTICLE

    A Co-Attention Mechanism into a Combined GNN-Based Model for Fake News Detection

    Soufiane Khedairia1, Akram Bennour2,*, Mouaaz Nahas3, Aida Chefrour1, Rashiq Rafiq Marie4, Mohammed Al-Sarem5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1267-1285, 2025, DOI:10.32604/cmc.2025.066601 - 29 August 2025

    Abstract These days, social media has grown to be an integral part of people’s lives. However, it involves the possibility of exposure to “fake news,” which may contain information that is intentionally or inaccurately false to promote particular political or economic interests. The main objective of this work is to use the co-attention mechanism in a Combined Graph neural network model (CMCG) to capture the relationship between user profile features and user preferences in order to detect fake news and examine the influence of various social media features on fake news detection. The proposed approach includes… More >

  • Open Access

    ARTICLE

    Real-Time Deepfake Detection via Gaze and Blink Patterns: A Transformer Framework

    Muhammad Javed1, Zhaohui Zhang1,*, Fida Hussain Dahri2, Asif Ali Laghari3,*, Martin Krajčík4, Ahmad Almadhor5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1457-1493, 2025, DOI:10.32604/cmc.2025.062954 - 29 August 2025

    Abstract Recent advances in artificial intelligence and the availability of large-scale benchmarks have made deepfake video generation and manipulation easier. Therefore, developing reliable and robust deepfake video detection mechanisms is paramount. This research introduces a novel real-time deepfake video detection framework by analyzing gaze and blink patterns, addressing the spatial-temporal challenges unique to gaze and blink anomalies using the TimeSformer and hybrid Transformer-CNN models. The TimeSformer architecture leverages spatial-temporal attention mechanisms to capture fine-grained blinking intervals and gaze direction anomalies. Compared to state-of-the-art traditional convolutional models like MesoNet and EfficientNet, which primarily focus on global facial… More >

  • Open Access

    ARTICLE

    Research on Multimodal AIGC Video Detection for Identifying Fake Videos Generated by Large Models

    Yong Liu1,2, Tianning Sun3,*, Daofu Gong1,4, Li Di5, Xu Zhao1

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1161-1184, 2025, DOI:10.32604/cmc.2025.062330 - 29 August 2025

    Abstract To address the high-quality forged videos, traditional approaches typically have low recognition accuracy and tend to be easily misclassified. This paper tries to address the challenge of detecting high-quality deepfake videos by promoting the accuracy of Artificial Intelligence Generated Content (AIGC) video authenticity detection with a multimodal information fusion approach. First, a high-quality multimodal video dataset is collected and normalized, including resolution correction and frame rate unification. Next, feature extraction techniques are employed to draw out features from visual, audio, and text modalities. Subsequently, these features are fused into a multilayer perceptron and attention mechanisms-based More >

  • Open Access

    REVIEW

    A Contemporary and Comprehensive Bibliometric Exposition on Deepfake Research and Trends

    Akanbi Bolakale AbdulQudus1, Oluwatosin Ahmed Amodu2,3,*, Umar Ali Bukar4, Raja Azlina Raja Mahmood2, Anies Faziehan Zakaria5, Saki-Ogah Queen6, Zurina Mohd Hanapi2

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 153-236, 2025, DOI:10.32604/cmc.2025.061427 - 09 June 2025

    Abstract This paper provides a comprehensive bibliometric exposition on deepfake research, exploring the intersection of artificial intelligence and deepfakes as well as international collaborations, prominent researchers, organizations, institutions, publications, and key themes. We performed a search on the Web of Science (WoS) database, focusing on Artificial Intelligence and Deepfakes, and filtered the results across 21 research areas, yielding 1412 articles. Using VOSviewer visualization tool, we analyzed this WoS data through keyword co-occurrence graphs, emphasizing on four prominent research themes. Compared with existing bibliometric papers on deepfakes, this paper proceeds to identify and discuss some of the… More >

  • Open Access

    ARTICLE

    Deepfake Detection Using Adversarial Neural Network

    Priyadharsini Selvaraj1,*, Senthil Kumar Jagatheesaperumal2, Karthiga Marimuthu1, Oviya Saravanan1, Bader Fahad Alkhamees3, Mohammad Mehedi Hassan3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 1575-1594, 2025, DOI:10.32604/cmes.2025.064138 - 30 May 2025

    Abstract With expeditious advancements in AI-driven facial manipulation techniques, particularly deepfake technology, there is growing concern over its potential misuse. Deepfakes pose a significant threat to society, particularly by infringing on individuals’ privacy. Amid significant endeavors to fabricate systems for identifying deepfake fabrications, existing methodologies often face hurdles in adjusting to innovative forgery techniques and demonstrate increased vulnerability to image and video clarity variations, thereby hindering their broad applicability to images and videos produced by unfamiliar technologies. In this manuscript, we endorse resilient training tactics to amplify generalization capabilities. In adversarial training, models are trained using More >

  • Open Access

    ARTICLE

    SMNDNet for Multiple Types of Deepfake Image Detection

    Qin Wang1, Xiaofeng Wang2,*, Jianghua Li2, Ruidong Han2, Zinian Liu1, Mingtao Guo3

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4607-4621, 2025, DOI:10.32604/cmc.2025.063141 - 19 May 2025

    Abstract The majority of current deepfake detection methods are constrained to identifying one or two specific types of counterfeit images, which limits their ability to keep pace with the rapid advancements in deepfake technology. Therefore, in this study, we propose a novel algorithm, Stereo Mixture Density Network (SMNDNet), which can detect multiple types of deepfake face manipulations using a single network framework. SMNDNet is an end-to-end CNN-based network specially designed for detecting various manipulation types of deepfake face images. First, we design a Subtle Distinguishable Feature Enhancement Module to emphasize the differentiation between authentic and forged… More >

  • Open Access

    ARTICLE

    Mitigating Fuel Station Drive-Offs Using AI: YOLOv8 OCR and MOT History API for Detecting Fake and Altered Plates

    Milinda Priyankara Bandara Gamawelagedara1, Mian Usman Sattar1, Raza Hasan2,*

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 4061-4084, 2025, DOI:10.32604/cmc.2025.062826 - 19 May 2025

    Abstract Fuel station drive-offs, wherein the drivers simply drive off without paying, are a major issue in the UK (United Kingdom) due to rising fuel costs and financial hardships. The phenomenon has increased greatly over the last few years, with reports indicating a substantial increase in such events in the major cities. Traditional prevention measures such as Avutec and Driveoffalert rely primarily on expensive infrastructure and blacklisted databases. Such systems typically involve costly camera installation and maintenance and are consequently out of the budget of small fuel stations. These conventional approaches also fall short regarding real-time… More >

Displaying 1-10 on page 1 of 64. Per Page