Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    CLF-YOLOv8: Lightweight Multi-Scale Fusion with Focal Geometric Loss for Real-Time Night Maritime Detection

    Zhonghao Wang1,2, Xin Liu1,2,*, Changhua Yue3, Haiwen Yuan4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-23, 2026, DOI:10.32604/cmc.2025.071813 - 09 December 2025

    Abstract To address critical challenges in nighttime ship detection—high small-target missed detection (over 20%), insufficient lightweighting, and limited generalization due to scarce, low-quality datasets—this study proposes a systematic solution. First, a high-quality Night-Ships dataset is constructed via CycleGAN-based day-night transfer, combined with a dual-threshold cleaning strategy (Laplacian variance sharpness filtering and brightness-color deviation screening). Second, a Cross-stage Lightweight Fusion-You Only Look Once version 8 (CLF-YOLOv8) is proposed with key improvements: the Neck network is reconstructed by replacing Cross Stage Partial (CSP) structure with the Cross Stage Partial Multi-Scale Convolutional Block (CSP-MSCB) and integrating Bidirectional Feature Pyramid More >

  • Open Access

    ARTICLE

    APPLE_YOLO: Apple Detection Method Based on Channel Pruning and Knowledge Distillation in Complicated Environments

    Xin Ma1,2, Jin Lei3,4,*, Chenying Pei4, Chunming Wu4

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-17, 2026, DOI:10.32604/cmc.2025.069353 - 09 December 2025

    Abstract This study proposes a lightweight apple detection method employing cascaded knowledge distillation (KD) to address the critical challenges of excessive parameters and high deployment costs in existing models. We introduce a Lightweight Feature Pyramid Network (LFPN) integrated with Lightweight Downsampling Convolutions (LDConv) to substantially reduce model complexity without compromising accuracy. A Lightweight Multi-channel Attention (LMCA) mechanism is incorporated between the backbone and neck networks to effectively suppress complex background interference in orchard environments. Furthermore, model size is compressed via Group_Slim channel pruning combined with a cascaded distillation strategy. Experimental results demonstrate that the proposed model More >

  • Open Access

    ARTICLE

    Marine Ship Detection Based on Twin Feature Pyramid Network and Spatial Attention

    Huagang Jin, Yu Zhou*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 751-768, 2025, DOI:10.32604/cmc.2025.067867 - 29 August 2025

    Abstract Recently, ship detection technology has been applied extensively in the marine security monitoring field. However, achieving accurate marine ship detection still poses significant challenges due to factors such as varying scales, slightly occluded objects, uneven illumination, and sea clutter. To address these issues, we propose a novel ship detection approach, i.e., the Twin Feature Pyramid Network and Data Augmentation (TFPN-DA), which mainly consists of three modules. First, to eliminate the negative effects of slightly occluded objects and uneven illumination, we propose the Spatial Attention within the Twin Feature Pyramid Network (SA-TFPN) method, which is based More >

  • Open Access

    ARTICLE

    DAFPN-YOLO: An Improved UAV-Based Object Detection Algorithm Based on YOLOv8s

    Honglin Wang1, Yaolong Zhang2,*, Cheng Zhu3

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 1929-1949, 2025, DOI:10.32604/cmc.2025.061363 - 16 April 2025

    Abstract UAV-based object detection is rapidly expanding in both civilian and military applications, including security surveillance, disaster assessment, and border patrol. However, challenges such as small objects, occlusions, complex backgrounds, and variable lighting persist due to the unique perspective of UAV imagery. To address these issues, this paper introduces DAFPN-YOLO, an innovative model based on YOLOv8s (You Only Look Once version 8s). The model strikes a balance between detection accuracy and speed while reducing parameters, making it well-suited for multi-object detection tasks from drone perspectives. A key feature of DAFPN-YOLO is the enhanced Drone-AFPN (Adaptive Feature… More >

  • Open Access

    ARTICLE

    YOLO-VSI: An Improved YOLOv8 Model for Detecting Railway Turnouts Defects in Complex Environments

    Chenghai Yu, Zhilong Lu*

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 3261-3280, 2024, DOI:10.32604/cmc.2024.056413 - 18 November 2024

    Abstract Railway turnouts often develop defects such as chipping, cracks, and wear during use. If not detected and addressed promptly, these defects can pose significant risks to train operation safety and passenger security. Despite advances in defect detection technologies, research specifically targeting railway turnout defects remains limited. To address this gap, we collected images from railway inspectors and constructed a dataset of railway turnout defects in complex environments. To enhance detection accuracy, we propose an improved YOLOv8 model named YOLO-VSS-SOUP-Inner-CIoU (YOLO-VSI). The model employs a state-space model (SSM) to enhance the C2f module in the YOLOv8… More >

  • Open Access

    ARTICLE

    Real-Time Prediction of Urban Traffic Problems Based on Artificial Intelligence-Enhanced Mobile Ad Hoc Networks (MANETS)

    Ahmed Alhussen1, Arshiya S. Ansari2,*

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 1903-1923, 2024, DOI:10.32604/cmc.2024.049260 - 15 May 2024

    Abstract Traffic in today’s cities is a serious problem that increases travel times, negatively affects the environment, and drains financial resources. This study presents an Artificial Intelligence (AI) augmented Mobile Ad Hoc Networks (MANETs) based real-time prediction paradigm for urban traffic challenges. MANETs are wireless networks that are based on mobile devices and may self-organize. The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts. This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network (CSFPNN) technique to assess real-time data… More >

  • Open Access

    ARTICLE

    Faster RCNN Target Detection Algorithm Integrating CBAM and FPN

    Wenshun Sheng*, Xiongfeng Yu, Jiayan Lin, Xin Chen

    Computer Systems Science and Engineering, Vol.47, No.2, pp. 1549-1569, 2023, DOI:10.32604/csse.2023.039410 - 28 July 2023

    Abstract Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle, distance, complex scene, illumination intensity, and other factors. These targets have few effective pixels, few features, and no apparent features, which makes extracting their efficient features difficult and easily leads to false detection, missed detection, and repeated detection, affecting the performance of target detection models. An improved faster region convolutional neural network (RCNN) algorithm (CF-RCNN) integrating convolutional block attention module (CBAM) and feature pyramid networks (FPN) is proposed to improve the detection and recognition… More >

  • Open Access

    ARTICLE

    MEB-YOLO: An Efficient Vehicle Detection Method in Complex Traffic Road Scenes

    Yingkun Song1, Shunhe Hong1, Chentao Hu1, Pingan He2, Lingbing Tao1, Zhixin Tie1,3,*, Chengfu Ding4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5761-5784, 2023, DOI:10.32604/cmc.2023.038910 - 29 April 2023

    Abstract Rapid and precise vehicle recognition and classification are essential for intelligent transportation systems, and road target detection is one of the most difficult tasks in the field of computer vision. The challenge in real-time road target detection is the ability to properly pinpoint relatively small vehicles in complicated environments. However, because road targets are prone to complicated backgrounds and sparse features, it is challenging to detect and identify vehicle kinds fast and reliably. We suggest a new vehicle detection model called MEB-YOLO, which combines Mosaic and MixUp data augmentation, Efficient Channel Attention (ECA) attention mechanism,… More >

Displaying 1-10 on page 1 of 8. Per Page