Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (5)
  • Open Access

    ARTICLE

    Localization of False Data Injection Attacks in Power Grid Based on Adaptive Neighborhood Selection and Spatio-Temporal Feature Fusion

    Zehui Qi, Sixing Wu*, Jianbin Li

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3739-3766, 2025, DOI:10.32604/cmc.2025.067180 - 23 September 2025

    Abstract False Data Injection Attacks (FDIAs) pose a critical security threat to modern power grids, corrupting state estimation and enabling malicious control actions that can lead to severe consequences, including cascading failures, large-scale blackouts, and significant economic losses. While detecting attacks is important, accurately localizing compromised nodes or measurements is even more critical, as it enables timely mitigation, targeted response, and enhanced system resilience beyond what detection alone can offer. Existing research typically models topological features using fixed structures, which can introduce irrelevant information and affect the effectiveness of feature extraction. To address this limitation, this… More >

  • Open Access

    ARTICLE

    Robust False Data Injection Identification Framework for Power Systems Using Explainable Deep Learning

    Ghadah Aldehim, Shakila Basheer, Ala Saleh Alluhaidan, Sapiah Sakri*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3599-3619, 2025, DOI:10.32604/cmc.2025.065643 - 23 September 2025

    Abstract Although digital changes in power systems have added more ways to monitor and control them, these changes have also led to new cyber-attack risks, mainly from False Data Injection (FDI) attacks. If this happens, the sensors and operations are compromised, which can lead to big problems, disruptions, failures and blackouts. In response to this challenge, this paper presents a reliable and innovative detection framework that leverages Bidirectional Long Short-Term Memory (Bi-LSTM) networks and employs explanatory methods from Artificial Intelligence (AI). Not only does the suggested architecture detect potential fraud with high accuracy, but it also… More >

  • Open Access

    ARTICLE

    Detection of False Data Injection Attacks: A Protected Federated Deep Learning Based on Encryption Mechanism

    Chenxin Lin1, Qun Zhou1, Zhan Wang2,*, Ximing Fan2, Yaochang Xu2, Yijia Xu2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5859-5877, 2025, DOI:10.32604/cmc.2025.065496 - 30 July 2025

    Abstract False Data Injection Attack (FDIA), a disruptive cyber threat, is becoming increasingly detrimental to smart grids with the deepening integration of information technology and physical power systems, leading to system unreliability, data integrity loss and operational vulnerability exposure. Given its widespread harm and impact, conducting in-depth research on FDIA detection is vitally important. This paper innovatively introduces a FDIA detection scheme: A Protected Federated Deep Learning (ProFed), which leverages Federated Averaging algorithm (FedAvg) as a foundational framework to fortify data security, harnesses pre-trained enhanced spatial-temporal graph neural networks (STGNN) to perform localized model training and More >

  • Open Access

    ARTICLE

    Self-Attention Spatio-Temporal Deep Collaborative Network for Robust FDIA Detection in Smart Grids

    Tong Zu, Fengyong Li*

    CMES-Computer Modeling in Engineering & Sciences, Vol.141, No.2, pp. 1395-1417, 2024, DOI:10.32604/cmes.2024.055442 - 27 September 2024

    Abstract False data injection attack (FDIA) can affect the state estimation of the power grid by tampering with the measured value of the power grid data, and then destroying the stable operation of the smart grid. Existing work usually trains a detection model by fusing the data-driven features from diverse power data streams. Data-driven features, however, cannot effectively capture the differences between noisy data and attack samples. As a result, slight noise disturbances in the power grid may cause a large number of false detections for FDIA attacks. To address this problem, this paper designs a… More >

  • Open Access

    ARTICLE

    Optimal Hybrid Deep Learning Enabled Attack Detection and Classification in IoT Environment

    Fahad F. Alruwaili*

    CMC-Computers, Materials & Continua, Vol.75, No.1, pp. 99-115, 2023, DOI:10.32604/cmc.2023.034752 - 06 February 2023

    Abstract The Internet of Things (IoT) paradigm enables end users to access networking services amongst diverse kinds of electronic devices. IoT security mechanism is a technology that concentrates on safeguarding the devices and networks connected in the IoT environment. In recent years, False Data Injection Attacks (FDIAs) have gained considerable interest in the IoT environment. Cybercriminals compromise the devices connected to the network and inject the data. Such attacks on the IoT environment can result in a considerable loss and interrupt normal activities among the IoT network devices. The FDI attacks have been effectively overcome so… More >

Displaying 1-10 on page 1 of 5. Per Page