Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Pipes with Trapezoidal Cut Twisted Tape Inserts in the Laminar Flow Regime: Nusselt Number and Friction Coefficient Analysis

    Shrikant Arunrao Thote*, Netra Pal Singh

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.2, pp. 501-511, 2023, DOI:10.32604/fdmp.2022.021502

    Abstract The thermal behavior of pipes with a twisted tape inside (used to enhance heat transfer through the tube wall) is studied in the laminar flow regime. Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000. It is found that in such conditions the ‘Nusselt Number’ (Nu) gradually increases with reducing the tape twist ratio, whereas the friction factor is detrimentally affected by the presence of the tape (as witnessed by the comparison with the companion case where a plain tube is considered). In particular, it is shown that the heat transfer efficiency can… More >

  • Open Access

    ARTICLE

    Numerical Investigation of Convective Heat Transfer and Friction in Solar Air Heater with Thin Ribs

    Sanjay K. Sharma1, V. R. Kalamkar1, *

    CMES-Computer Modeling in Engineering & Sciences, Vol.114, No.3, pp. 295-319, 2018, DOI:10.3970/cmes.2018.114.295

    Abstract The three-dimensional numerical investigation of an incompressible flow through rib roughened solar air heater is carried out. A combination of thin transverse and truncated ribs is attached on the absorber plate to study its effect on the heat transfer and friction factor. The parameters in the form of Reynolds number (Re) of 4000-16000, relative roughness pitch (P/e) of 8-18 and relative roughness height (e/Dh) of 0.0366-0.055 is considered for the analysis. The CFD code ANSYS FLUENT is used to solve the governing equations of turbulent flow. The RNG k–ε turbulence model is used to solve the transport equations with enhanced… More >

  • Open Access

    ARTICLE

    Hydrodynamics and Heat Transfer in Two and Three-dimensional Minichannels

    D. Cherrared1, E. G. Filali1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 127-151, 2013, DOI:10.3970/fdmp.2013.009.127

    Abstract Our study deals with the characterization of the flow and related heat transfer in a smooth, circular minichannel. A duct with a sudden (sharp-edged) contraction is also considered. Prediction of the pressure loss coefficient in this case is obtained via the commercial code CFX 5.7.1. This code is based on the finite volume method for the solution of the Navier-Stokes and offers several turbulences models (in this study we use the shear stress turbulence model - SST). The numerical results are compared with experimental results obtained for a configuration similar to those considered in the numerical study. The numerical algorithm… More >

Displaying 11-20 on page 2 of 13. Per Page