Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (593)
  • Open Access

    ARTICLE

    Hybrid Pythagorean Fuzzy Decision-Making Framework for Sustainable Urban Planning under Uncertainty

    Sana Shahab1, Vladimir Simic2,*, Ashit Kumar Dutta3,4, Mohd Anjum5,*, Dragan Pamucar6,7,8

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.073945 - 29 January 2026

    Abstract Environmental problems are intensifying due to the rapid growth of the population, industry, and urban infrastructure. This expansion has resulted in increased air and water pollution, intensified urban heat island effects, and greater runoff from parks and other green spaces. Addressing these challenges requires prioritizing green infrastructure and other sustainable urban development strategies. This study introduces a novel Integrated Decision Support System that combines Pythagorean Fuzzy Sets with the Advanced Alternative Ranking Order Method allowing for Two-Step Normalization (AAROM-TN), enhanced by a dual weighting strategy. The weighting approach integrates the Criteria Importance Through Intercriteria Correlation… More >

  • Open Access

    ARTICLE

    Adaptability Analysis of Dual Clearing Systems in Spot Electricity Markets Based on Fuzzy Evaluation Metrics: An Inner Mongolia Case Study

    Kai Xie1, Shaoqing Yuan2, Dayun Zou1, Jinran Wang1,*, Genjun Chen1, Ciwei Gao3, Yinghao Cao1

    Energy Engineering, Vol.123, No.2, 2026, DOI:10.32604/ee.2025.070733 - 27 January 2026

    Abstract The construction of spot electricity markets plays a pivotal role in power system reforms, where market clearing systems profoundly influence market efficiency and security. Current clearing systems predominantly adopt a single-system architecture, with research focusing primarily on accelerating solution algorithms through techniques such as high-efficiency parallel solvers and staggered decomposition of mixed-integer programming models. Notably absent are systematic studies evaluating the adaptability of primary-backup clearing systems in contingency scenarios—a critical gap given redundant systems’ expanding applications in operational environments. This paper proposes a comprehensive evaluation framework for analyzing dual-system adaptability, demonstrated through an in-depth case… More >

  • Open Access

    ARTICLE

    Machine Learning Based Simulation, Synthesis, and Characterization of Zinc Oxide/Graphene Oxide Nanocomposite for Energy Storage Applications

    Tahir Mahmood1,*, Muhammad Waseem Ashraf1,*, Shahzadi Tayyaba2, Muhammad Munir3, Babiker M. A. Abdel-Banat3, Hassan Ali Dinar3

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072436 - 12 January 2026

    Abstract Artificial intelligence (AI) based models have been used to predict the structural, optical, mechanical, and electrochemical properties of zinc oxide/graphene oxide nanocomposites. Machine learning (ML) models such as Artificial Neural Networks (ANN), Support Vector Regression (SVR), Multilayer Perceptron (MLP), and hybrid, along with fuzzy logic tools, were applied to predict the different properties like wavelength at maximum intensity (444 nm), crystallite size (17.50 nm), and optical bandgap (2.85 eV). While some other properties, such as energy density, power density, and charge transfer resistance, were also predicted with the help of datasets of 1000 (80:20). In… More >

  • Open Access

    ARTICLE

    A Novel Semi-Supervised Multi-View Picture Fuzzy Clustering Approach for Enhanced Satellite Image Segmentation

    Pham Huy Thong1, Hoang Thi Canh2,3,*, Nguyen Tuan Huy4, Nguyen Long Giang1,*, Luong Thi Hong Lan4

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.071776 - 12 January 2026

    Abstract Satellite image segmentation plays a crucial role in remote sensing, supporting applications such as environmental monitoring, land use analysis, and disaster management. However, traditional segmentation methods often rely on large amounts of labeled data, which are costly and time-consuming to obtain, especially in large-scale or dynamic environments. To address this challenge, we propose the Semi-Supervised Multi-View Picture Fuzzy Clustering (SS-MPFC) algorithm, which improves segmentation accuracy and robustness, particularly in complex and uncertain remote sensing scenarios. SS-MPFC unifies three paradigms: semi-supervised learning, multi-view clustering, and picture fuzzy set theory. This integration allows the model to effectively… More >

  • Open Access

    ARTICLE

    A Parallelized Grey Wolf Optimizer-Based Fuzzy C-Means for Fast and Accurate MRI Segmentation on GPU

    Mohammed Debakla1,*, Ali Mezaghrani1, Khalifa Djemal2, Imane Zouaneb1

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-21, 2026, DOI:10.32604/cmc.2025.071927 - 09 December 2025

    Abstract Magnetic Resonance Imaging (MRI) has a pivotal role in medical image analysis, for its ability in supporting disease detection and diagnosis. Fuzzy C-Means (FCM) clustering is widely used for MRI segmentation due to its ability to handle image uncertainty. However, the latter still has countless limitations, including sensitivity to initialization, susceptibility to local optima, and high computational cost. To address these limitations, this study integrates Grey Wolf Optimization (GWO) with FCM to enhance cluster center selection, improving segmentation accuracy and robustness. Moreover, to further refine optimization, Fuzzy Entropy Clustering was utilized for its distinctive features… More >

  • Open Access

    ARTICLE

    Searchable Attribute-Based Encryption with Multi-Keyword Fuzzy Matching for Cloud-Based IoT

    He Duan, Shi Zhang*, Dayu Li

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-25, 2026, DOI:10.32604/cmc.2025.069628 - 09 December 2025

    Abstract Internet of Things (IoT) interconnects devices via network protocols to enable intelligent sensing and control. Resource-constrained IoT devices rely on cloud servers for data storage and processing. However, this cloud-assisted architecture faces two critical challenges: the untrusted cloud services and the separation of data ownership from control. Although Attribute-based Searchable Encryption (ABSE) provides fine-grained access control and keyword search over encrypted data, existing schemes lack of error tolerance in exact multi-keyword matching. In this paper, we proposed an attribute-based multi-keyword fuzzy searchable encryption with forward ciphertext search (FCS-ABMSE) scheme that avoids computationally expensive bilinear pairing… More >

  • Open Access

    ARTICLE

    Neuro-Fuzzy Computational Dynamics of Reactive Hybrid Nanofluid Flow Inside a Squarely Elevated Riga Tunnel with Ramped Thermo-Solutal Conditions under Strong Electromagnetic Rotation

    Asgar Ali1,*, Nayan Sardar2, Poly Karmakar3, Sanatan Das4

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 3563-3626, 2025, DOI:10.32604/cmes.2025.074082 - 23 December 2025

    Abstract Hybrid nanofluids have gained significant attention for their superior thermal and rheological characteristics, offering immense potential in energy conversion, biomedical transport, and electromagnetic flow control systems. Understanding their dynamic behavior under coupled magnetic, rotational, and reactive effects is crucial for the development of efficient thermal management technologies. This study develops a neuro-fuzzy computational framework to examine the dynamics of a reactive Cu–TiO2–H2O hybrid nanofluid flowing through a squarely elevated Riga tunnel. The governing model incorporates Hall and ion-slip effects, thermal radiation, and first-order chemical reactions under ramped thermo-solutal boundary conditions and rotational electromagnetic forces. Closed-form analytical… More >

  • Open Access

    ARTICLE

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

    Rebhi M’hamed1,*, Himri Youcef2,3,*, Bouchiba Bousmaha1, Yaichi Mouaadh1

    Energy Engineering, Vol.122, No.12, pp. 4899-4918, 2025, DOI:10.32604/ee.2025.070806 - 27 November 2025

    Abstract Currently, most conventional street lighting systems use a constant light mode throughout the entire night, from sunset to sunrise, which results in high energy consumption and maintenance costs. Furthermore, scientific research predicts that energy consumption for street lighting will increase in the coming years due to growing demand and rising electricity prices. The dimming strategy is a current trend and a key concept in smart street lighting systems. It involves turning on the road lights only when a vehicle or pedestrian is detected; otherwise, the control system reduces the light intensity of the lamps. Power… More > Graphic Abstract

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

  • Open Access

    ARTICLE

    Dombi Power Aggregation-Based Decision Framework for Smart City Initiative Prioritization under t-Arbicular Fuzzy Environment

    Jawad Ali1,*, Ioan-Lucian Popa2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 857-889, 2025, DOI:10.32604/cmes.2025.064604 - 30 October 2025

    Abstract With the rapid growth of urbanization, smart city development has become a strategic priority worldwide, requiring complex and uncertain decision-making processes. In this context, advanced decision-support tools are essential to evaluate and prioritize competing initiatives effectively. To support effective prioritization of smart city initiatives under uncertainty, this study introduces a robust decision-making framework based on the t-arbicular fuzzy (t-AF) set—a recent extension of the t-spherical fuzzy set that incorporates an additional parameter, the radius , to enhance the representation of uncertainty. Dombi-based operational laws are formulated within this context, leading to the development of four… More >

Displaying 1-10 on page 1 of 593. Per Page