Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (586)
  • Open Access

    ARTICLE

    Energy Management of Photovoltaic Plant for Smart Street Lighting System

    Rebhi M’hamed1,*, Himri Youcef2,3,*, Bouchiba Bousmaha1, Yaichi Mouaadh1

    Energy Engineering, Vol.122, No.12, pp. 4899-4918, 2025, DOI:10.32604/ee.2025.070806 - 27 November 2025

    Abstract Currently, most conventional street lighting systems use a constant light mode throughout the entire night, from sunset to sunrise, which results in high energy consumption and maintenance costs. Furthermore, scientific research predicts that energy consumption for street lighting will increase in the coming years due to growing demand and rising electricity prices. The dimming strategy is a current trend and a key concept in smart street lighting systems. It involves turning on the road lights only when a vehicle or pedestrian is detected; otherwise, the control system reduces the light intensity of the lamps. Power… More >

  • Open Access

    ARTICLE

    A Unified Parametric Divergence Operator for Fermatean Fuzzy Environment and Its Applications in Machine Learning and Intelligent Decision-Making

    Zhe Liu1,2,3,*, Sijia Zhu4, Yulong Huang1,*, Tapan Senapati5,6,7, Xiangyu Li8, Wulfran Fendzi Mbasso9, Himanshu Dhumras10, Mehdi Hosseinzadeh11,12,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2157-2188, 2025, DOI:10.32604/cmes.2025.072352 - 26 November 2025

    Abstract Uncertainty and ambiguity are pervasive in real-world intelligent systems, necessitating advanced mathematical frameworks for effective modeling and analysis. Fermatean fuzzy sets (FFSs), as a recent extension of classical fuzzy theory, provide enhanced flexibility for representing complex uncertainty. In this paper, we propose a unified parametric divergence operator for FFSs, which comprehensively captures the interplay among membership, non-membership, and hesitation degrees. The proposed operator is rigorously analyzed with respect to key mathematical properties, including non-negativity, non-degeneracy, and symmetry. Notably, several well-known divergence operators, such as Jensen-Shannon divergence, Hellinger distance, and χ2-divergence, are shown to be special cases More >

  • Open Access

    ARTICLE

    Dombi Power Aggregation-Based Decision Framework for Smart City Initiative Prioritization under t-Arbicular Fuzzy Environment

    Jawad Ali1,*, Ioan-Lucian Popa2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 857-889, 2025, DOI:10.32604/cmes.2025.064604 - 30 October 2025

    Abstract With the rapid growth of urbanization, smart city development has become a strategic priority worldwide, requiring complex and uncertain decision-making processes. In this context, advanced decision-support tools are essential to evaluate and prioritize competing initiatives effectively. To support effective prioritization of smart city initiatives under uncertainty, this study introduces a robust decision-making framework based on the t-arbicular fuzzy (t-AF) set—a recent extension of the t-spherical fuzzy set that incorporates an additional parameter, the radius , to enhance the representation of uncertainty. Dombi-based operational laws are formulated within this context, leading to the development of four… More >

  • Open Access

    ARTICLE

    An Active Safe Semi-Supervised Fuzzy Clustering with Pairwise Constraints Based on Cluster Boundary

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5625-5642, 2025, DOI:10.32604/cmc.2025.069636 - 23 October 2025

    Abstract Semi-supervised clustering techniques attempt to improve clustering accuracy by utilizing a limited number of labeled data for guidance. This method effectively integrates prior knowledge using pre-labeled data. While semi-supervised fuzzy clustering (SSFC) methods leverage limited labeled data to enhance accuracy, they remain highly susceptible to inappropriate or mislabeled prior knowledge, especially in noisy or overlapping datasets where cluster boundaries are ambiguous. To enhance the effectiveness of clustering algorithms, it is essential to leverage labeled data while ensuring the safety of the previous knowledge. Existing solutions, such as the Trusted Safe Semi-Supervised Fuzzy Clustering Method (TS3FCM),… More >

  • Open Access

    ARTICLE

    An Innovative Semi-Supervised Fuzzy Clustering Technique Using Cluster Boundaries

    Duong Tien Dung1,2,3, Ha Hai Nam4, Nguyen Long Giang3, Luong Thi Hong Lan5,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5341-5357, 2025, DOI:10.32604/cmc.2025.068299 - 23 October 2025

    Abstract Active semi-supervised fuzzy clustering integrates fuzzy clustering techniques with limited labeled data, guided by active learning, to enhance classification accuracy, particularly in complex and ambiguous datasets. Although several active semi-supervised fuzzy clustering methods have been developed previously, they typically face significant limitations, including high computational complexity, sensitivity to initial cluster centroids, and difficulties in accurately managing boundary clusters where data points often overlap among multiple clusters. This study introduces a novel Active Semi-Supervised Fuzzy Clustering algorithm specifically designed to identify, analyze, and correct misclassified boundary elements. By strategically utilizing labeled data through active learning, our More >

  • Open Access

    ARTICLE

    Modified Watermarking Scheme Using Informed Embedding and Fuzzy c-Means–Based Informed Coding

    Jyun-Jie Wang1, Yin-Chen Lin1, Chi-Chun Chen2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5595-5624, 2025, DOI:10.32604/cmc.2025.066160 - 23 October 2025

    Abstract Digital watermarking must balance imperceptibility, robustness, complexity, and security. To address the challenge of computational efficiency in trellis-based informed embedding, we propose a modified watermarking framework that integrates fuzzy c-means (FCM) clustering into the generation off block codewords for labeling trellis arcs. The system incorporates a parallel trellis structure, controllable embedding parameters, and a novel informed embedding algorithm with reduced complexity. Two types of embedding schemes—memoryless and memory-based—are designed to flexibly trade-off between imperceptibility and robustness. Experimental results demonstrate that the proposed method outperforms existing approaches in bit error rate (BER) and computational complexity under More >

  • Open Access

    ARTICLE

    Auto-Weighted Neutrosophic Fuzzy Clustering for Multi-View Data

    Zhe Liu1,2,*, Jiahao Shi3, Dania Santina4, Yulong Huang1, Nabil Mlaiki4

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3531-3555, 2025, DOI:10.32604/cmes.2025.071145 - 30 September 2025

    Abstract The increasing prevalence of multi-view data has made multi-view clustering a crucial technique for discovering latent structures from heterogeneous representations. However, traditional fuzzy clustering algorithms show limitations with the inherent uncertainty and imprecision of such data, as they rely on a single-dimensional membership value. To overcome these limitations, we propose an auto-weighted multi-view neutrosophic fuzzy clustering (AW-MVNFC) algorithm. Our method leverages the neutrosophic framework, an extension of fuzzy sets, to explicitly model imprecision and ambiguity through three membership degrees. The core novelty of AW-MVNFC lies in a hierarchical weighting strategy that adaptively learns the contributions More >

  • Open Access

    ARTICLE

    Urban Transportation Strategy Selection for Multi-Criteria Group Decision-Making Using Pythagorean Fuzzy N-Bipolar Soft Expert Sets

    Sagvan Y. Musa1,2, Zanyar A. Ameen3,*, Wafa Alagal4, Baravan A. Asaad5,6

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3493-3529, 2025, DOI:10.32604/cmes.2025.070019 - 30 September 2025

    Abstract Urban transportation planning involves evaluating multiple conflicting criteria such as accessibility, cost-effectiveness, and environmental impact, often under uncertainty and incomplete information. These complex decisions require input from various stakeholders, including planners, policymakers, engineers, and community representatives, whose opinions may differ or contradict. Traditional decision-making approaches struggle to effectively handle such bipolar and multivalued expert evaluations. To address these challenges, we propose a novel decision-making framework based on Pythagorean fuzzy N-bipolar soft expert sets. This model allows experts to express both positive and negative opinions on a multinary scale, capturing nuanced judgments with higher accuracy. It… More >

  • Open Access

    REVIEW

    A Review of Artificial Intelligence-Enhanced Fuzzy Multi-Criteria Decision-Making Approaches for Sustainable Transportation Planning

    Nezir Aydin1,2,*, Melike Cari3, Betul Kara3, Ertugrul Ayyildiz1,3

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 2625-2650, 2025, DOI:10.32604/cmc.2025.067290 - 23 September 2025

    Abstract Transportation systems are rapidly transforming in response to urbanization, sustainability challenges, and advances in digital technologies. This review synthesizes the intersection of artificial intelligence (AI), fuzzy logic, and multi-criteria decision-making (MCDM) in transportation research. A comprehensive literature search was conducted in the Scopus database, utilizing carefully selected AI, fuzzy, and MCDM keywords. Studies were rigorously screened according to explicit inclusion and exclusion criteria, resulting in 73 eligible publications spanning 2006–2025. The review protocol included transparent data extraction on methodological approaches, application domains, and geographic distribution. Key findings highlight the prevalence of hybrid fuzzy AHP and… More >

  • Open Access

    ARTICLE

    An Inverted Pendulum System Control with Fuzzy Linear Quadratic Regulator Method: Experimental Validation

    Tayfun Abut*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 4023-4042, 2025, DOI:10.32604/cmc.2025.066920 - 23 September 2025

    Abstract In this study, a dynamic model for an inverted pendulum system (IPS) attached to a car is created, and two different control methods are applied to control the system. The designed control algorithms aim to stabilize the pendulum arms in the upright position and the car to reach the equilibrium position. Grey Wolf Optimization-based Linear Quadratic Regulator (GWO-LQR) and GWO-based Fuzzy LQR (FLQR) control algorithms are used in the control process. To improve the performance of the LQR and FLQR methods, the optimum values of the coefficients corresponding to the foot points of the membership… More >

Displaying 1-10 on page 1 of 586. Per Page