Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (457)
  • Open Access

    ARTICLE

    Data and Ensemble Machine Learning Fusion Based Intelligent Software Defect Prediction System

    Sagheer Abbas1, Shabib Aftab1,2, Muhammad Adnan Khan3,4, Taher M. Ghazal5,6, Hussam Al Hamadi7, Chan Yeob Yeun8,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 6083-6100, 2023, DOI:10.32604/cmc.2023.037933

    Abstract The software engineering field has long focused on creating high-quality software despite limited resources. Detecting defects before the testing stage of software development can enable quality assurance engineers to concentrate on problematic modules rather than all the modules. This approach can enhance the quality of the final product while lowering development costs. Identifying defective modules early on can allow for early corrections and ensure the timely delivery of a high-quality product that satisfies customers and instills greater confidence in the development team. This process is known as software defect prediction, and it can improve end-product quality while reducing the cost… More >

  • Open Access

    ARTICLE

    Enhanced Water Quality Control Based on Predictive Optimization for Smart Fish Farming

    Azimbek Khudoyberdiev1, Mohammed Abdul Jaleel1, Israr Ullah2, DoHyeun Kim3,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5471-5499, 2023, DOI:10.32604/cmc.2023.036898

    Abstract The requirement for high-quality seafood is a global challenge in today’s world due to climate change and natural resource limitations. Internet of Things (IoT) based Modern fish farming systems can significantly optimize seafood production by minimizing resource utilization and improving healthy fish production. This objective requires intensive monitoring, prediction, and control by optimizing leading factors that impact fish growth, including temperature, the potential of hydrogen (pH), water level, and feeding rate. This paper proposes the IoT based predictive optimization approach for efficient control and energy utilization in smart fish farming. The proposed fish farm control mechanism has a predictive optimization… More >

  • Open Access

    ARTICLE

    Traffic Management in Internet of Vehicles Using Improved Ant Colony Optimization

    Abida Sharif1, Imran Sharif1, Muhammad Asim Saleem2, Muhammad Attique Khan3, Majed Alhaisoni4, Marriam Nawaz5,6, Abdullah Alqahtani7, Ye Jin Kim8, Byoungchol Chang9,*

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 5379-5393, 2023, DOI:10.32604/cmc.2023.034413

    Abstract The Internet of Vehicles (IoV) is a networking paradigm related to the intercommunication of vehicles using a network. In a dynamic network, one of the key challenges in IoV is traffic management under increasing vehicles to avoid congestion. Therefore, optimal path selection to route traffic between the origin and destination is vital. This research proposed a realistic strategy to reduce traffic management service response time by enabling real-time content distribution in IoV systems using heterogeneous network access. Firstly, this work proposed a novel use of the Ant Colony Optimization (ACO) algorithm and formulated the path planning optimization problem as an… More >

  • Open Access

    ARTICLE

    Analysing Various Control Technics for Manipulator Robotic System (Robogymnast)

    Mahmoud Mohamed1,2,*, Bdereddin Abdul Samad1,3, Fatih Anayi1, Michael Packianather1, Khalid Yahya4

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4681-4696, 2023, DOI:10.32604/cmc.2023.035312

    Abstract The Robogymnast is a highly complex, three-link system based on the triple-inverted pendulum and is modelled on the human example of a gymnast suspended by their hands from the high bar and executing larger and larger upswings to eventually rotate fully. The links of the Robogymnast correspond respectively to the arms, trunk, and lower limbs of the gymnast, and from its three joints, one is under passive operation, while the remaining two are powered. The passive top joint poses severe challenges in attaining the smooth movement control needed to operate the Robogymnast effectively. This study assesses four types of controllers… More >

  • Open Access

    ARTICLE

    Improved Supervised and Unsupervised Metaheuristic-Based Approaches to Detect Intrusion in Various Datasets

    Ouail Mjahed1,*, Salah El Hadaj1, El Mahdi El Guarmah1,2, Soukaina Mjahed1

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.1, pp. 265-298, 2023, DOI:10.32604/cmes.2023.027581

    Abstract Due to the increasing number of cyber-attacks, the necessity to develop efficient intrusion detection systems (IDS) is more imperative than ever. In IDS research, the most effectively used methodology is based on supervised Neural Networks (NN) and unsupervised clustering, but there are few works dedicated to their hybridization with metaheuristic algorithms. As intrusion detection data usually contains several features, it is essential to select the best ones appropriately. Linear Discriminant Analysis (LDA) and t-statistic are considered as efficient conventional techniques to select the best features, but they have been little exploited in IDS design. Thus, the research proposed in this… More >

  • Open Access

    ARTICLE

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

    Mustafa Sami Abdullatef*, Faten N. Alzubaidi, Anees Al-Tamimi, Yasser Ahmed Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.8, pp. 2083-2107, 2023, DOI:10.32604/fdmp.2023.027266

    Abstract The ongoing effort to create methods for detecting and quantifying fatigue damage is motivated by the high levels of uncertainty in present fatigue-life prediction approaches and the frequently catastrophic nature of fatigue failure. The fatigue life of high strength aluminum alloy 2090-T83 is predicted in this study using a variety of artificial intelligence and machine learning techniques for constant amplitude and negative stress ratios (). Artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), support-vector machines (SVM), a random forest model (RF), and an extreme-gradient tree-boosting model (XGB) are trained using numerical and experimental input data obtained from fatigue tests… More > Graphic Abstract

    Fatigue Life Estimation of High Strength 2090-T83 Aluminum Alloy under Pure Torsion Loading Using Various Machine Learning Techniques

  • Open Access

    ARTICLE

    Fuzzy Logic-Based System for Liver Fibrosis Disease

    Tamim Alkhalifah1,*, Jimmy Singla2, Fahad Alurise1

    Computer Systems Science and Engineering, Vol.46, No.3, pp. 3559-3582, 2023, DOI:10.32604/csse.2023.036534

    Abstract The diagnosis of liver fibrosis (LF) is crucial as it is a deadly and life-threatening disease. Artificial intelligence techniques aid doctors by using the previous data on health and making a diagnostic system, which helps to take decisions about patients’ health as experts can. The historical data of a patient’s health can have vagueness, inaccurate, and can also have missing values. The fuzzy logic theory can deal with these issues in the dataset. In this paper, a multilayer fuzzy expert system is developed to diagnose LF. The model is created by using multiple layers of the fuzzy logic approach. This… More >

  • Open Access

    ARTICLE

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

    Wei Chen1, Na Sun1, Zhicheng Ma2, Wenfei Liu2, Haiying Dong1,*

    Energy Engineering, Vol.120, No.6, pp. 1445-1464, 2023, DOI:10.32604/ee.2023.027158

    Abstract To address the frequency fluctuation problem caused by the power dynamic imbalance between the power system and the load when a large number of new energy sources are connected to the grid, a two-layer fuzzy control strategy is proposed for the participation of the energy storage battery system in FM. Firstly, considering the coordination of FM units responding to automatic power generation control commands, a comprehensive allocation strategy of two signals under automatic power generation control commands is proposed to give full play to the advantages of two FM signals while enabling better coordination of two FM units responding to… More > Graphic Abstract

    A Two-Layer Fuzzy Control Strategy for the Participation of Energy Storage Battery Systems in Grid Frequency Regulation

  • Open Access

    ARTICLE

    Output Linearization of Single-Input Single-Output Fuzzy System to Improve Accuracy and Performance

    Salah-ud-din Khokhar1,2,*, QinKe Peng1, Muhammad Yasir Noor3

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 2413-2427, 2023, DOI:10.32604/cmc.2023.036148

    Abstract For fuzzy systems to be implemented effectively, the fuzzy membership function (MF) is essential. A fuzzy system (FS) that implements precise input and output MFs is presented to enhance the performance and accuracy of single-input single-output (SISO) FSs and introduce the most applicable input and output MFs protocol to linearize the fuzzy system’s output. Utilizing a variety of non-linear techniques, a SISO FS is simulated. The results of FS experiments conducted in comparable conditions are then compared. The simulated results and the results of the experimental setup agree fairly well. The findings of the suggested model demonstrate that the relative… More >

  • Open Access

    ARTICLE

    Cardiac Arrhythmia Disease Classifier Model Based on a Fuzzy Fusion Approach

    Fatma Taher1, Hamoud Alshammari2, Lobna Osman3, Mohamed Elhoseny4, Abdulaziz Shehab5,2,*, Eman Elayat6

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 4485-4499, 2023, DOI:10.32604/cmc.2023.036118

    Abstract Cardiac diseases are one of the greatest global health challenges. Due to the high annual mortality rates, cardiac diseases have attracted the attention of numerous researchers in recent years. This article proposes a hybrid fuzzy fusion classification model for cardiac arrhythmia diseases. The fusion model is utilized to optimally select the highest-ranked features generated by a variety of well-known feature-selection algorithms. An ensemble of classifiers is then applied to the fusion’s results. The proposed model classifies the arrhythmia dataset from the University of California, Irvine into normal/abnormal classes as well as 16 classes of arrhythmia. Initially, at the preprocessing steps,… More >

Displaying 21-30 on page 3 of 457. Per Page