Anas Al-Ragehi1, Said Jadid Abdulkadir1,2,*, Amgad Muneer1,2, Safwan Sadeq3, Qasem Al-Tashi4,5
CMC-Computers, Materials & Continua, Vol.73, No.1, pp. 2169-2186, 2022, DOI:10.32604/cmc.2022.027885
Abstract Generative Adversarial Networks (GANs) are neural networks that allow models to learn deep representations without requiring a large amount of training data. Semi-Supervised GAN Classifiers are a recent innovation in GANs, where GANs are used to classify generated images into real and fake and multiple classes, similar to a general multi-class classifier. However, GANs have a sophisticated design that can be challenging to train. This is because obtaining the proper set of parameters for all models-generator, discriminator, and classifier is complex. As a result, training a single GAN model for different datasets may not produce… More >