Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (11)
  • Open Access


    Overexpression of β-1,4-Glucanase Gene EuEG1 Improves Micrografting of Eucommia ulmoides

    Lei Wang1, Runying Wang1, Yi Li3, Yichen Zhao1,*, Degang Zhao1,2,*

    Phyton-International Journal of Experimental Botany, Vol.92, No.11, pp. 3063-3075, 2023, DOI:10.32604/phyton.2023.043803

    Abstract Adventitious root formation poses a major constraint on the tissue culture and genetic transformation of Eucommia ulmoides. Micrografting offers a new method for the transplantation of genetic transformation, and its success depends on the formation of graft unions. This study used transgenic rootless test-tube seedlings as scions and seedlings from seed as rootstocks during micrografting to avoid the rooting issues that occur during tissue culture and to investigate the role of the EuEG1 gene in the graft healing process. We found that the EuEG1 gene is a vital regulator of graft, and its overexpression contributes to the survival of Eucommia… More >

  • Open Access


    The Promoting Effect of Multifunctional Groups on the Thermal and Mechanical Properties of PVC Materials

    Mei Wang1,*, Xinzhu Fan1, Xianghai Song2, Quan Bu1,*

    Journal of Renewable Materials, Vol.11, No.2, pp. 867-880, 2023, DOI:10.32604/jrm.2022.022996

    Abstract The development of PVC materials grafted with mannich base originated from myrcene (P-MAM-g, where the mannich base derived from myrcene is abbreviated as MAM) via green and effective synthetic methods is a good strategy to avoid unacceptable discoloration and deterioration of thermal and mechanical properties caused by autocatalytic dehydrochlorination (DHC) during PVC processing. In this study, MAM with double bonds, amino groups, ester groups, and phospholipid groups was introduced into the chains of PVC to improve the thermal stability of PVC. The experimental results showed that the covalent attachment of MAM to PVC enhanced both the initial and the long-term… More >

  • Open Access


    Peroxide Treatment of Soy Protein Fibers Followed by Grafting of Poly(methyl acrylate) and Copolymers

    Pushpa Bhardwaj1, Susheel Kalia2,3,*, Amit Kumar1, Hemant Mittal4

    Journal of Renewable Materials, Vol.1, No.4, pp. 302-310, 2013, DOI:10.7569/JRM.2013.634123

    Abstract The objective of the present study is to elucidate the effect of peroxide treatment and graft copolymerization on water absorption behavior of soy protein fi bers in order to make them suitable as a reinforcing material. Grafting of poly(methyl acrylate) and copolymers was successfully carried out on peroxide-treated soy protein fi bers. Different reaction parameters were optimized in order to get maximum percentage grafting. The grafted fi bers were evaluated for water absorption behavior in deionized water. Maximum grafting has been found at 0.219 mol/l of methyl acrylate, 0.0096:0.145 mol/l of FAS:H2O2 , 323 K, and 90minutes. Graft copolymerization results… More >

  • Open Access


    Analysis of Efficient 32 Bit Adder Using Tree Grafting Technique

    R. Gowrishankar1,*, N. Sathish Kumar2

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 1197-1209, 2023, DOI:10.32604/iasc.2023.025422

    Abstract Adder with high efficiency and accuracy is the major requirement for electronic circuit design. Here the optical logic gate based adder circuit is designed for better performance analysis of optical input signals varied with the wavelength. Efficiency of the adder can be improved by increasing the speed of operation, reducing the complexity and power consumption. To maintain the high efficiency with accuracy, a new combination of adder has been proposed and tested in this work. A new adder by combining the logics of Brent Kung, Sklansky and Kogge Stone adders by Tree Grafting Technique (BSKTGT) has been tested along with… More >

  • Open Access


    Process Modelling and Experimental Analysis of Optimal Specimen Selection in Organic CMCs

    P. V. Rajesh1, Kanak Kalita2,*, Xiao-Zhi Gao3

    CMC-Computers, Materials & Continua, Vol.70, No.2, pp. 2415-2433, 2022, DOI:10.32604/cmc.2022.018247

    Abstract Bone grafting is a surgical restructuring procedure of replacing broken bones and reconstructing missing bone pieces so that complex bone fractures can be repaired to avoid any serious health risk as well as permanent bone disfiguration. Normally, human bones tend to regenerate and heal completely from fracture. But it needs a small scaffold to provide the necessary space to grow. Bone implants allow a broken bone to grow seamlessly. Traditionally, non-corrosive metal alloys are used for fixing broken bones. A metal plate is fastened between two ends of broken bones to join them. However, issues like high weight, high cost,… More >

  • Open Access


    Combined Surgical Treatment of Atherosclerotic Coronary Artery Disease and Moderate Aortic Valve Stenosis in Patient with Concomitant Lipton’s R-III Type of Single Coronary Artery Anomaly

    Milica Karadzic Kocica1, Hristina Ugrinovic1, Dejan Lazovic2, Nemanja Karamarkovic2, Milos Grujic2, Borivoje Lukic3, Oliver Radmili3, Vladimir Cvetic3, Mladen Kocica2,*

    Congenital Heart Disease, Vol.16, No.6, pp. 647-653, 2021, DOI:10.32604/CHD.2021.016923

    Abstract A single coronary artery is a very rare condition, commonly associated with other congenital anomalies. It could be generally considered as neither benign nor malignant form of congenital coronary artery anomalies since its pathophysiological and clinical implications grossly depend on different anatomical patterns defined by the site of origin and distribution of the branches. By presenting the patient who underwent successful coronary artery bypass grafting and aortic valve replacement surgery in a presence of isolated single coronary artery, we intend to emphasize natural and procedural risks and distinguish casual from causal in this extremely rare clinical and surgical scenario. More >

  • Open Access


    Coronary artery bypass grafting in infants, children, and young adults for acquired and congenital lesions

    Constantine Mavroudis

    Congenital Heart Disease, Vol.12, No.5, pp. 644-646, 2017, DOI:10.1111/chd.12491

    Abstract Coronary artery disease ranges from congenital in origin such as anomalous aortic origin of a coronary artery (AAOCA) to acquired diseases such as Kawasaki disease, and previously repaired conditions such as transposition of the great arteries. It is not uncommon, in the long run, for proximal coronary stenosis to develop following arterial switch, AAOCA repair, Ross procedure and Kawasaki disease leading to coronary artery bypass grafing (CABG). The objective of this report is to discuss the indications, challenges, and outcomes of CABG in infants, children, and young adults with acquired and congenital lesions. More >

  • Open Access


    Synthesis of Poly(acrylic acid)-Grafted Carboxymethyl Cellulose for Efficient Removal of Copper Ions

    Ying Lin1, Yihua Cao1, Qingping Song1, Jiangang Gao1, Puyou Jia2,*, Hamed Alsulami3, Marwan Amin Kutbi3

    Journal of Renewable Materials, Vol.7, No.12, pp. 1403-1414, 2019, DOI:10.32604/jrm.2019.08380

    Abstract Biocompatible and high content grafted carboxymethyl cellulose-gpoly(acrylic acid) powder was successfully synthesized in an aqueous system, and used as adsorbents for the removal of Cu(II) in aqueous solution. The copolymer was characterized by FT-IR and SEM techniques. Graft copolymerization introduced a large number of carboxyl groups in the polymer and caused the micro-surface of the material to be porous. The fundamental adsorption behaviors of the material were studied. The adsorption kinetics was well fitted with pseudo-second order equation, while the adsorption isotherm preferred to be described the Langmuir equation. The maximum adsorption capacity obtained from the Langmuir model was 154.32… More >

  • Open Access


    Hemodynamic Based Surgical Decision on Sequential Graft and Y-Type Graft in Coronary Artery Bypass Grafting

    Xi Zhao, Youjun Liu∗,†, Wenxin Wang

    Molecular & Cellular Biomechanics, Vol.12, No.1, pp. 49-66, 2015, DOI:10.3970/mcb.2015.012.049

    Abstract Purpose: Sequential graft and Y-type graft are two different surgical procedures in coronary artery bypass grafting (CABG). The hemodynamic environment of them are different, that may cause different short-term surgical result and long-term patency. In this study, the short-term and long-term result of sequential and Y-type graft was discussed by comparing the hemodynamics of them. Materials and Methods: Two postoperative 3-dimensional (3D) models were built by applying different graft on a patient-specific 3D model with serious stenosis. Then zero-dimensional (0D)/3D coupled simulation was carried out by coupling the postoperative 3D models with a 0D lumped parameter model of the cardiovascular… More >

  • Open Access


    In Vitro Measurement and Calculation of Drag Force on Iliac Limb Stentgraft in a Compliant Arterial Wall Model

    A. Sinha Roy*, K. West, R. S. Rontala1, R. K. Greenberg2, R. K. Banerje1,‡

    Molecular & Cellular Biomechanics, Vol.4, No.4, pp. 211-226, 2007, DOI:10.3970/mcb.2007.004.211

    Abstract Interventional treatment of aortic aneurysms using endovascular stentgrafting is a minimally invasive technique. Following device implantation, transient drag forces act on the stentgraft. When the drag force exceeds the fixation force, complications like stentgraft migration, endoleaks and stentgraft failure occur. In such a scenario the device becomes unstable, causing concern over the long-term durability of endovascular repairs. The objective of this study is: 1) to measure the drag force on iliac limb stentgraft, having a distal diameter that is half the size of the proximal end, in an in vitro experiment; 2) to calculate the drag force using blood flow--compliant… More >

Displaying 1-10 on page 1 of 11. Per Page