Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ABSTRACT

    The multiscale analysis of polycrystalline metals and its interface with a-Al2O3 under tension

    Qin Siwei, Shen SP

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 53-54, 2011, DOI:10.3970/icces.2011.019.053

    Abstract Among many multiscale methods ,we choose the quasicontinuum method to understand the mechanical response at the nanocrystalline of grain boundaries(GBs) under tension. The energetic and mechanical strength of 6 i?"<110> symmetric tilt GBs are investigated in nanocrystalline Cu and Ni. We focus on discussing the interaction of the structural units of symmetric tilt GB for the initial deformation mode and the strength of model. At the basis of the previous, We study the nanocrystalline Cu/a-Al2O3 interface and analyze the relationship during the grains orientations, GB energy and interface. Special emphasis is placed on the crystal slip from the interface across… More >

  • Open Access

    ABSTRACT

    Computer Simulation of Grain Boundary Structures in Minerals

    B.B. Karki1, R. Kumar1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.3, No.1, pp. 35-42, 2007, DOI:10.3970/icces.2007.003.035

    Abstract We report important preliminary results from atomistic simulations of grain boundaries in minerals. The recently developed parallel PCMD (polycrystal molec-ular dynamics) program was used to perform structural optimization. In particular, we have simulated the {310}/[001] symmetric tilt grain boundary of MgO as a function of pressure. The simulation cell containing about 55,000 atoms was used. Visualization of the atomic position-time series data show that the structure changes dramatically on compression from a simple open-structure at zero pressure to a highly dense structure containing high coordination state and a screw-like dislocation at high pressure, consistent with previous atomistic simulations. Our future… More >

Displaying 1-10 on page 1 of 2. Per Page