Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (2)
  • Open Access

    ARTICLE

    Bias Calibration under Constrained Communication Using Modified Kalman Filter: Algorithm Design and Application to Gyroscope Parameter Error Calibration

    Qi Li, Yifan Wang*, Yuxi Liu, Xingjing She, Yixuan Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074066 - 29 January 2026

    Abstract In data communication, limited communication resources often lead to measurement bias, which adversely affects subsequent system estimation if not effectively handled. This paper proposes a novel bias calibration algorithm under communication constraints to achieve accurate system states of the interested system. An output-based event-triggered scheme is first employed to alleviate transmission burden. Accounting for the limited-communication-induced measurement bias, a novel bias calibration algorithm following the Kalman filtering line is developed to restrain the effect of the measurement bias on system estimation, thereby achieving accurate system state estimates. Subsequently, the Field Programmable Gate Array (FPGA) implementation More >

  • Open Access

    ARTICLE

    Gyroscope Dynamic Balance Counterweight Prediction Based on Multi-Head ResGAT Networks

    Wuyang Fan, Shisheng Zhong*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.3, pp. 2525-2555, 2024, DOI:10.32604/cmes.2023.046951 - 11 March 2024

    Abstract The dynamic balance assessment during the assembly of the coordinator gyroscope significantly impacts the guidance accuracy of precision-guided equipment. In dynamic balance debugging, reliance on rudimentary counterweight empirical formulas persists, resulting in suboptimal debugging accuracy and an increased repetition rate. To mitigate this challenge, we present a multi-head residual graph attention network (ResGAT) model, designed to predict dynamic balance counterweights with high precision. In this research, we employ graph neural networks for interaction feature extraction from assembly graph data. An SDAE-GPC model is designed for the assembly condition classification to derive graph data inputs for More >

Displaying 1-10 on page 1 of 2. Per Page