Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    A Non-Intrusive Spiral Coil Heat Exchanger for Waste Heat Recovery from HVAC Units: Experimental and Thermal Performance Analysis

    S. Srinivasa senthil, K. Vijayakumar*

    Energy Engineering, Vol.122, No.12, pp. 5149-5173, 2025, DOI:10.32604/ee.2025.070889 - 27 November 2025

    Abstract Heating, ventilation, and air conditioning (HVAC) systems contribute substantially to global energy consumption, while rejecting significant amounts of low-grade heat into the environment. This paper presents a non-intrusive spiral-coil heat exchanger designed to recover waste heat from the outdoor condenser of a split-type air conditioner. The system operates externally without altering the existing HVAC configuration, thereby rendering it suitable for retrofitting. Water was circulated as the working fluid at flow rates of 0.028–0.052 kg/s to assess thermal performance. Performance indicators, including the outlet water temperature, heat transfer rate, convective coefficient, and efficiency, were systematically evaluated.… More >

  • Open Access

    ARTICLE

    Impact of Duty Cycling HVAC Systems on Thermal Comfort, Energy Consumption, and Operational Costs

    Alya Penta Agharid1, Indra Permana2, Linlan Chang1, Yi-Han Luo2, Fujen Wang2,*

    Energy Engineering, Vol.122, No.9, pp. 3839-3866, 2025, DOI:10.32604/ee.2025.068586 - 26 August 2025

    Abstract Air conditioning (AC) is essential for maintaining indoor comfort during Taiwan’s hot and humid summers but significantly contributes to increased energy consumption. This study evaluates the effects of AC duty-cycling strategies on energy performance, thermal comfort, and operational costs in office environments. Duty-cycling was implemented using a building energy management system (BEMS), which remotely controlled the ON/OFF cycles of AC units. Five duty-cycling modes were tested, with some modes incorporating air circulation during OFF periods. Field measurements of energy consumption, temperature, humidity, and air velocity were conducted and integrated with thermal comfort analysis tools to… More >

  • Open Access

    ARTICLE

    HVAC Optimal Control Based on the Sensitivity Analysis: An Improved SA Combination Method Based on a Neural Network

    Lifan Zhao1,2, Zetian Huang1,2, Qiming Fu1,2,3,*, Nengwei Fang4, Bin Xing4, Jianping Chen2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2741-2758, 2023, DOI:10.32604/cmes.2023.025500 - 09 March 2023

    Abstract Aiming at optimizing the energy consumption of HVAC, an energy conservation optimization method was proposed for HVAC systems based on the sensitivity analysis (SA), named the sensitivity analysis combination method (SAC). Based on the SA, neural network and the related settings about energy conservation of HVAC systems, such as cooling water temperature, chilled water temperature and supply air temperature, were optimized. Moreover, based on the data of the existing HVAC system, various optimal control methods of HVAC systems were tested and evaluated by a simulated HVAC system in TRNSYS. The results show that the proposed More >

Displaying 1-10 on page 1 of 3. Per Page