Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Improving Heat Transfer in Parabolic Trough Solar Collectors by Magnetic Nanofluids

    Ritesh Singh1, Abhishek Gupta1, Akshoy Ranjan Paul1, Bireswar Paul1, Suvash C. Saha2,*

    Energy Engineering, Vol.121, No.4, pp. 835-848, 2024, DOI:10.32604/ee.2024.046849

    Abstract A parabolic trough solar collector (PTSC) converts solar radiation into thermal energy. However, low thermal efficiency of PTSC poses a hindrance to the deployment of solar thermal power plants. Thermal performance of PTSC is enhanced in this study by incorporating magnetic nanoparticles into the working fluid. The circular receiver pipe, with dimensions of 66 mm diameter, 2 mm thickness, and 24 m length, is exposed to uniform temperature and velocity conditions. The working fluid, Therminol-66, is supplemented with Fe3O4 magnetic nanoparticles at concentrations ranging from 1% to 4%. The findings demonstrate that the inclusion of nanoparticles increases the convective heat… More >

  • Open Access

    ARTICLE

    Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, Xuejian Pei, He Lu, Shuzhen Zong

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 287-304, 2024, DOI:10.32604/fhmt.2023.045038

    Abstract As compact and efficient heat exchange equipment, helically coiled tube-in-tube heat exchangers (HCTT heat exchangers) are widely used in many industrial processes. However, the thermal-hydraulic research of liquefied natural gas (LNG) as the working fluid in HCTT heat exchangers is rarely reported. In this paper, the characteristics of HCTT heat exchangers, in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube, are studied by numerical simulations. The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity, the helical middle diameter, and… More >

  • Open Access

    ARTICLE

    DETERMINATION OF RADIATION HEAT TRANSFER COEFFICIENT OF STANDING HUMAN BODY MODEL BY NUMERICAL APPROACH

    Ahmad Najjaran1, Ali R. Tahavvor, Abdolkarim Najjaran, Mohammad A. Ahmadfard

    Frontiers in Heat and Mass Transfer, Vol.3, No.3, pp. 1-6, 2012, DOI:10.5098/hmt.v3.3.3007

    Abstract In this paper, external radiation heat transfer coefficient and flux of a standing human body model are calculated for different emissivity coefficients and various temperature differences. To do this, a standing human body sample is designed in such a way that hands and feet are totally open and stretched. Soles are in contact with the ground and so do not have heat transfer. The results are extracted by weighted average method. Despite the existence of the air around the body in reality, the convection heat transfer of human body with the surrounding air is neglected in order to prevent errors… More >

  • Open Access

    ARTICLE

    DETERMINING HEAT TRANSFER COEFFICIENT OF HUMAN BODY

    A. Najjaran*, Ak. Najjaran, A. Fotoohabadi, A.R. Shiri

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-5, 2013, DOI:10.5098/hmt.v4.1.3003

    Abstract In this paper, the aim is obtaining convection coefficient of human body. This field of study is essential in study of ventilation systems, astronauts’ clothes and any other fields in which human body is the main concern. At first a 3D human body has been designed by unstructured grids. Feet and hands are stretched completely in considered sample. Two postures (standing and supine) are considered for body. Soles and the back of entire body are considered in contact with the ground respectively in these postures. Other parts of human body are exposed to surrounding air. The heat transfer and the… More >

  • Open Access

    ARTICLE

    EXPERIMENTS ON HEAT TRANSFER CHARACTERISTICS OF SHEARDRIVEN LIQUID FILM IN CO-CURRENT GAS FLOW

    Tomoki Hirokawaa,*, Masahiko Murozonoa, Oleg Kabovb,c, Haruhiko Ohtaa

    Frontiers in Heat and Mass Transfer, Vol.5, pp. 1-8, 2014, DOI:10.5098/hmt.5.17

    Abstract Experiments are performed to study the liquid film behavior and corresponding local heat transfer to shear-driven liquid film flow of water in the cocurrent nitrogen gas flow. The heated channel has a cross section of 30mm in width and 5mm in height, where the bottom is operated as a heating surface of 30mm in width and 100mm in length. The heated section is divided into segments to evaluate the local heat transfer coefficients. Under most gas Reynolds numbers, the local heat transfer coefficients are increased with increasing heat flux, where three mechanisms are important; (i) increase of areas along the… More >

  • Open Access

    ARTICLE

    INTEGRAL ENERGY EQUATION MODEL FOR HEAT CONVECTION TO TURBULENT BOUNDARY LAYER ON A FLAT PLATE

    Mohammad Hasan Khademia,*, Abbas Mozafarib

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-8, 2016, DOI:10.5098/hmt.7.33

    Abstract An integral energy equation model is used to calculate the heat transfer coefficient/Nusselt number, thermal boundary layer thickness and temperature distribution in the turbulent boundary layer for forced convection over a smooth flat plate. The proposed model is based on two polynomial temperature profiles in a thermal laminar sublayer as well as in a fully developed boundary layer and two integral energy equations. The performance of this new model is compared with the most commonly used semi-empirical correlations and the complex established models such as k-ε, k-ω, RSM, and a good agreement is achieved. More >

  • Open Access

    ARTICLE

    On the Effect of Mist Flow on the Heat Transfer Performances of a Three-CopperSphere Configuration

    Karema A. Hamad*, Yasser A. Mahmood

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2863-2875, 2023, DOI:10.32604/fdmp.2023.029049

    Abstract The cooling of a (pebble bed) spent fuel in a high-temperature gas-cooled reactor (HTGR) is adversely affected by an increase in the temperature of the used gas (air). To investigate this problem, a configuration consisting of three copper spheres arranged in tandem subjected to a forced mist flow inside a cylindrical channel is considered. The heat transfer coefficients and related variations as a function of Reynolds number are investigated accordingly. The experimental results show that when compared to those with only airflow, the heat transfer coefficient of the spherical elements with mist flow (j = 112 kg/m2 hr, Re =… More >

  • Open Access

    ARTICLE

    WALL ORIENTATION EFFECT ON THE DETACHMENT OF A VAPOR BUBBLE

    Touhami Bakia,*, Djamel Sahela , Ahmed Guessabb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-7, 2017, DOI:10.5098/hmt.9.14

    Abstract Boiling is influenced by a large number of parameters; the angle of orientation constitutes one of these parameters which have a positive impact on the heat transfer. The dynamic of the bubble plays a significant role in the improvement of heat transfer during boiling. For this reason, we are located on the bubble scale and we simulated the detachment of vapor bubble in the liquid water on a heated surface, when the angle of orientation varies from 0 to 180°. We followed the evolution of the sliding of the bubble; it appears that the thermal boundary layer is disturbed and… More >

  • Open Access

    ARTICLE

    INTERFACIAL HEAT TRANSFER COEFFICIENT ESTIMATION DURING SOLIDIFICATION OF RECTANGULAR ALUMINUM ALLOY CASTING USING TWO DIFFERENT INVERSE METHODS

    R. Rajaramana , L. Anna Gowsalyab,*, R. Velrajc

    Frontiers in Heat and Mass Transfer, Vol.11, pp. 1-8, 2018, DOI:10.5098/hmt.11.23

    Abstract To get accurate results in casting simulations, prediction of interfacial heat transfer coefficient (IHTC) is imperative. In this paper an attempt has been made for estimating IHTC during solidification process of a rectangular aluminium alloy casting in a sand mould. The cast temperature and mould temperature are measured during the experimental process at different time intervals during the process of solidification. Two different inverse methods, namely control volume and Beck’s approach are used to estimate the heat flux and temperature at the mould surface by using the experimentally measured temperatures. In the case of control volume technique, the partial derivative… More >

  • Open Access

    ARTICLE

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

    Tiezhu Sun*, Huan Sun, Tingzheng Tang, Yongcheng Yan, Peixuan Li

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2519-2531, 2023, DOI:10.32604/fdmp.2023.027118

    Abstract The so-called indirect evaporative cooling technology is widely used in air conditioning applications. The thermal characterization of tube-type indirect evaporative coolers, however, still presents challenges which need to be addressed to make this technology more reliable and easy to implement. This experimental study deals with the performances of a tube-type indirect evaporative cooler based on an aluminum tube with a 10 mm diameter. In particular, the required tests were carried out considering a range of dry-bulb temperatures between 16°C and 18°C and a temperature difference between the wet-bulb and dry-bulb temperature of 2°C∼4°C. The integrated convective heat transfer coefficient inside the… More > Graphic Abstract

    Experimental Study on the Thermal Performances of a Tube-Type Indirect Evaporative Cooler

Displaying 1-10 on page 1 of 24. Per Page