Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (93)
  • Open Access

    ARTICLE

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

    Abeer H. Falih*, Basima Salman Khalaf, Basim Freegah

    Frontiers in Heat and Mass Transfer, Vol.22, No.2, pp. 597-613, 2024, DOI:10.32604/fhmt.2024.049812 - 20 May 2024

    Abstract In this study, the primary objective was to enhance the hydrothermal performance of a dimpled tube by addressing areas with low heat transfer compared to other regions. To accomplish this, a comprehensive numerical investigation was conducted using ANSYS Fluent 2022 R1 software, focusing on different diameters of dimples along the pipe’s length and the distribution of dimples in both in-line and staggered arrangements. The simulations utilized the finite element method to address turbulent flow within the tube by solving partial differential equations, encompassing Re numbers spanning from 3000 to 8000. The study specifically examined single-phase… More > Graphic Abstract

    Investigate the Impact of Dimple Size and Distribution on the Hydrothermal Performance of Dimpled Heat Exchanger Tubes

  • Open Access

    ARTICLE

    Performance Simulation of a Double Tube Heat Exchanger Based on Different Nanofluids by Aspen Plus

    Fawziea M. Hussien1, Atheer S. Hassoon2,*, Ghaidaa M. Ahmed1

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 175-191, 2024, DOI:10.32604/fhmt.2023.047177 - 21 March 2024

    Abstract A heat exchanger’s performance depends heavily on the operating fluid’s transfer of heat capacity and thermal conductivity. Adding nanoparticles of high thermal conductivity materials is a significant way to enhance the heat transfer fluid's thermal conductivity. This research used engine oil containing alumina (Al2O3) nanoparticles and copper oxide (CuO) to test whether or not the heat exchanger’s efficiency could be improved. To establish the most effective elements for heat transfer enhancement, the heat exchangers thermal performance was tested at 0.05% and 0.1% concentrations for Al2O3 and CuO nanoparticles. The simulation results showed that the percentage increase… More >

  • Open Access

    ARTICLE

    Numerical Studies on Thermal and Hydrodynamic Characteristics of LNG in Helically Coiled Tube-in-Tube Heat Exchangers

    Fayi Yan*, Xuejian Pei, He Lu, Shuzhen Zong

    Frontiers in Heat and Mass Transfer, Vol.22, No.1, pp. 287-304, 2024, DOI:10.32604/fhmt.2023.045038 - 21 March 2024

    Abstract As compact and efficient heat exchange equipment, helically coiled tube-in-tube heat exchangers (HCTT heat exchangers) are widely used in many industrial processes. However, the thermal-hydraulic research of liquefied natural gas (LNG) as the working fluid in HCTT heat exchangers is rarely reported. In this paper, the characteristics of HCTT heat exchangers, in which LNG flows in the inner tube and ethylene glycol-water solution flows in the outer tube, are studied by numerical simulations. The influences of heat transfer characteristics and pressure drops of the HCTT heat transfers are studied by changing the initial flow velocity,… More >

  • Open Access

    ARTICLE

    Tubular Heat Enhancement Using Twisted Tape Inserts with Large Holes

    Ali Jaber Abdulhamed*, Aws Al-Akam, Wisam J. Khudhayer, Ali Sabri Allw

    Energy Engineering, Vol.121, No.2, pp. 273-290, 2024, DOI:10.32604/ee.2023.045583 - 25 January 2024

    Abstract Heat augmentation techniques play a vital role in the heating and cooling processes in industries, including solar collectors and many applications that utilize heat exchangers. Several studies are based on inserting fillers inside the tubes to enhance heat transfer. This investigation considered the effects of twisted tapes with large holes on a tubular heat exchanger’s (HX) heat transmission, pressure drop, and thermal boosting factor. In the experimental section, counter-swirl flow generators used twisted tapes with pairs of 1.0 cm-diameter holes and changes in porosity (Rp) at 1.30% and 2.70%. In the experiments, air was utilized as… More >

  • Open Access

    ARTICLE

    Numerical Assessments on Flow Topology and Heat Transfer Behavior in a Round Tube Inserted with Three Sets of V-Ribs

    Amnart Boonloi1, Withada Jedsadaratanachai2,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 81-106, 2023, DOI:10.32604/fhmt.2023.041547 - 30 November 2023

    Abstract Simulation of fluid-flow topology and thermal behavior in a round tube heat exchanger (RTHX) installed by three V-rib sets is reported. The expected phenomena for the rib installation are the generated vortex flow, impinging flow, greater fluid blending and thermal boundary layer disturbance (TBLD). These phenomena are key causes of the augmentation of heat transfer potentiality and thermal efficiency of the RTHX. Effects of rib height (b1 = 0.05D – 0.25D and b2 = 0.05D – 0.25D), rib pitch or rib spacing (P = D, 1.5D and 2D) and fluid directions (positive x (+x flow direction)… More > Graphic Abstract

    Numerical Assessments on Flow Topology and Heat Transfer Behavior in a Round Tube Inserted with Three Sets of V-Ribs

  • Open Access

    ARTICLE

    CFD-Based Optimization of a Shell-and-Tube Heat Exchanger

    Juanjuan Wang*, Jiangping Nan, Yanan Wang

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.11, pp. 2761-2775, 2023, DOI:10.32604/fdmp.2023.021175 - 18 September 2023

    Abstract The main objective of this study is the technical optimization of a Shell-and-Tube Heat Exchanger (STHE). In order to do so, a simulation model is introduced that takes into account the related gas-phase circulation. Then, simulation verification experiments are designed in order to validate the model. The results show that the temperature field undergoes strong variations in time when an inlet wind speed of 6 m/s is considered, while the heat transfer error reaches a minimum of 5.1%. For an inlet velocity of 9 m/s, the heat transfer drops to the lowest point, while the More >

  • Open Access

    ARTICLE

    Simulation and Optimization of the Fluid Solidification Process in Brazed Plate Heat Exchangers

    Weiting Jiang1,*, Lei Zhao1,*, Chongyang Wang2, Tingni He1, Weiguo Pan1

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2597-2611, 2023, DOI:10.32604/fdmp.2023.027504 - 25 June 2023

    Abstract When a brazed plate heat exchanger is used as an evaporator, the working mass in the channel may undergo solidification, thereby hindering the refrigeration cycle. In this study the liquid solidification process and its optimization in a brazed plate heat exchanger are investigated numerically for different inlet velocities; moreover, different levels of corrugation are considered. The results indicate that solidification first occurs around the contacts, followed by the area behind the contacts. It is also shown that dead flow zones exist in the sharp areas and such areas are prone to liquid solidification. After optimization, More >

  • Open Access

    ARTICLE

    In Tube Condensation: Changing the Pressure Drop into a Temperature Difference for a Wire-on-Tube Heat Exchanger

    Louay Abd Al-Azez Mahdi, Mohammed A. Fayad, Miqdam T. Chaichan*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.9, pp. 2201-2214, 2023, DOI:10.32604/fdmp.2023.027166 - 16 May 2023

    Abstract A theoretical study based on the Penalty factor (PF) method by Cavallini et al. is conducted to show that the pressure drop occurring in a wire-on-tube heat exchanger can be converted into a temperature difference for two types of refrigerants R-134a and R-600a typically used for charging refrigerators and freezers. The following conditions are considered: stratified or stratified-wavy flow condensation occurring inside the smooth tube of a wire-on-tube condenser with diameter 3.25, 4.83, and 6.299 mm, condensation temperatures 35°C, 45°C, and 54.4°C and cover refrigerant mass flow rate spanning the interval from 1 to 7 kg/hr.… More > Graphic Abstract

    In Tube Condensation: Changing the Pressure Drop into a Temperature Difference for a Wire-on-Tube Heat Exchanger

  • Open Access

    ARTICLE

    PERFORMANCE ANALYSIS OF AN ENERGY EFFICIENT PCM-BASED ROOM COOLING SYSTEM

    Ummid I. Shaikha , Sonali Kaleb, Anirban Surc, Anindita Royc

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-10, 2023, DOI:10.5098/hmt.20.28

    Abstract The requirement for sustainable development for buildings is to have environmentally friendly cooling and heating systems. The utilization of phase change materials (PCM) in the cooling system is a potential solution for minimizing active power requirements as well as for reducing the size of components of a vapor compression refrigeration VCR system. A prototype of an Air-PCM (T25™) heat exchanger was fabricated and tested in actual environmental conditions. Experimental trials using a salt hydrate as PCM have shown the maximum cooling effect of 2.05 kW when 75% of the PCM was solidified. Based on the More >

  • Open Access

    ARTICLE

    CONVECTIVE HEAT EXCHANGER FROM RENEWABLE SUN RADIATION BY NANOFLUIDS FLOW IN DIRECT ABSORPTION SOLAR COLLECTORS WITH ENTROPY

    Girma Tafesse , Mitiku Daba, Vedagiri G. Naidu

    Frontiers in Heat and Mass Transfer, Vol.20, pp. 1-12, 2023, DOI:10.5098/hmt.20.27

    Abstract Innovative technologies necessitate extra energy, which can be captured from environmentally sustainable, renewable solar energy. Here, heat and mass transfer through stirring nanofluids in solar collectors for direct absorption of sunlight are pronounced. The similarity transformation served to turn mathematically regulated partial differential equations into sets of nonlinear higher-order ordinary differential equations. These equations have been resolved by the homotopy analysis method manipulating, BVPh2.0 package in Mathematica 12.1. Validations are justified through comparison. Afterward, stronger magnetic field interactions delay the nanofluids mobility. Temperature increases with thermal radiation and Biot numbers. Entropy formation and nanoparticle concentration More >

Displaying 21-30 on page 3 of 93. Per Page