Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (141)
  • Open Access

    ARTICLE

    MINE: A Method of Multi-Interaction Heterogeneous Information Network Embedding

    Dongjie Zhu1, Yundong Sun1, Xiaofang Li2, Haiwen Du3, Rongning Qu2, Pingping Yu4, *, Xuefeng Piao1, Russell Higgs5, Ning Cao6

    CMC-Computers, Materials & Continua, Vol.63, No.3, pp. 1343-1356, 2020, DOI:10.32604/cmc.2020.010008

    Abstract Interactivity is the most significant feature of network data, especially in social networks. Existing network embedding methods have achieved remarkable results in learning network structure and node attributes, but do not pay attention to the multiinteraction between nodes, which limits the extraction and mining of potential deep interactions between nodes. To tackle the problem, we propose a method called MultiInteraction heterogeneous information Network Embedding (MINE). Firstly, we introduced the multi-interactions heterogeneous information network and extracted complex heterogeneous relation sequences by the multi-interaction extraction algorithm. Secondly, we use a well-designed multi-relationship network fusion model based on the attention mechanism to fuse… More >

  • Open Access

    ARTICLE

    Multi-Scale Analysis of Fretting Fatigue in Heterogeneous Materials Using Computational Homogenization

    Dimitra Papagianni1, 2, Magd Abdel Wahab3, 4, *

    CMC-Computers, Materials & Continua, Vol.62, No.1, pp. 79-97, 2020, DOI:10.32604/cmc.2020.07988

    Abstract This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis (FEA). The heterogeneous material for the specimens consists of a single hole model (25% void/cell, 16% void/cell and 10% void/cell) and a four-hole model (25% void/cell). Using a representative volume element (RVE), we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue. Next, the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part (single… More >

  • Open Access

    Synthesis of Methyl Lactate from Glycerol Using Sn-Beta Zeolite

    Wenjie Dong, Chenlu Wang, Minyan Gu, Long Yang, Zheng Shen*, Yalei Zhang*

    Journal of Renewable Materials, Vol.5, Suppl.1, pp. 22-30, 2017, DOI:10.7569/JRM.2017.634126

    Abstract Lactic acid can not only be used to produce multiple chemicals, but can also be the building block for biodegradable and biocompatible polylactic acid identified as a renewable resource. As a by-product in biodiesel production, the glycerol yield increases with a rapid expansion of biodiesel. However, in the chemical and environmental fields it is still a great challenge to produce lactic acid or methyl lactate from glycerol. Herein, Sn-Beta zeolite was prepared through solid-state ion exchange (Sn-Beta SSIE) and was tested for base-free one-pot catalytic selective oxidation of glycerol into methyl lactate in methanol. The results showed that a maximum… More >

  • Open Access

    ARTICLE

    Simulation of Solid Particle Interactions Including Segregated Lamination by Using MPS Method

    Kyung Sung Kim1, Moo-Hyun Kim2,*, Hakun Jang3, Hee Chen Cho4

    CMES-Computer Modeling in Engineering & Sciences, Vol.116, No.1, pp. 11-29, 2018, DOI:10.31614/cmes.2018.00199

    Abstract A new MPS (Moving Particle Semi-implicit) method is developed to simulate the behaviors and interactions of multiple fine solid particles as a continuum. As fluid particles are affected by viscosity, so solid particles are affected by friction. The solid particle dynamics for landslides, dumping, and gravity sorting etc. which can be difficult to simulate using conventional MPS methods, are modeled in this paper using the developed multi-solid-particle MPS method that benefits from drawing comparisons with the corresponding fluid particle behaviors. The present MPS results for dumping solid particles are verified against the corresponding DEM (Discrete Element Method) results. The shape… More >

  • Open Access

    ABSTRACT

    On the Identification of Heterogeneous Nonlinear Material Properties of the Aortic Wall from Clinical Gated CT Scans

    Minliang Liu1, Liang Liang2, Xiaoying Lou3, Glen Iannucci3, Edward Chen3, Bradley Leshnower3, Wei Sun1,*

    Molecular & Cellular Biomechanics, Vol.16, Suppl.2, pp. 53-53, 2019, DOI:10.32604/mcb.2019.07387

    Abstract It is well known that mechanical properties of the aortic wall exhibit patient-specific variations. Recent experimental findings also suggest the aortic wall properties are highly region-specific [1-2]. Thus, in vivo heterogeneous (non-uniform) nonlinear mechanical properties of the aortic wall of individual patients needs to be noninvasively identified for accurate prediction of clinical events (e.g. aortic rupture).
    In this study, we developed an inverse approach for identification of patient-specific non-uniform material properties of the aortic wall from gated 3D CT scans. This inverse approach leverages the fact that the in vivo transmural mean stress (tension) of the aortic wall is… More >

  • Open Access

    ARTICLE

    SGBEM Voronoi Cells (SVCs), with Embedded Arbitrary-Shaped Inclusions, Voids, and/or Cracks, for Micromechanical Modeling of Heterogeneous Materials

    Leiting Dong1,2, Satya N. Atluri1,3

    CMC-Computers, Materials & Continua, Vol.33, No.2, pp. 111-154, 2013, DOI:10.3970/cmc.2013.033.111

    Abstract In this study, SGBEM Voronoi Cells (SVCs), with each cell representing a grain of the material at the micro-level, are developed for direct micromechanical numerical modeling of heterogeneous composites. Each SVC can consist of either a (each with a different) homogenous isotropic matrix, and can include micro-inhomogeneities such as inclusions, voids of a different material, and cracks. These inclusions and voids in each SVC can be arbitrarily-shaped, such as circular, elliptical, polygonal, etc., for 2D problems. Further, the cracks in each SVC can be fully-embedded, edge, branching, or intersecting types, with arbitrary curved shapes. By rearranging the weakly-singular boundary integral… More >

  • Open Access

    ARTICLE

    Block Stratification of Sedimenting Granular Matter in a Vessel due to Vertical Vibrations

    V.G. Kozlov1,2, A.A. Ivanova3, P. Evesque1

    FDMP-Fluid Dynamics & Materials Processing, Vol.2, No.3, pp. 203-210, 2006, DOI:10.3970/fdmp.2006.002.203

    Abstract Sedimentation of granular matter in a vertical channel filled with a viscous liquid and subject to longitudinal translational vibration is studied, starting froma compact suspension. A new vibrational effect is foundexperimentally and described theoretically; it is the formation of blocks (with a relatively high density) of sedimenting granular matter with stable lower and upper horizontal demarcations and a sharp density discontinuity. Owing to this phenomenon the sedimentation velocity of such granular matter is reduced. A new theoreticalmodel based on viscous vibrational particle interactionin the limit of concentrated suspensions is elaborated, assuming particle-particle attraction in direction parallel tovibration and particle-particle repulsion… More >

  • Open Access

    ABSTRACT

    Modeling of moisture diffusion in permeable fiber-reinforced polymer composites using heterogeneous hybrid moisture element method

    De-Shin Liu, Zhen-Wei Zhuang, Cho-Liang Chung

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.19, No.2, pp. 39-40, 2011, DOI:10.3970/icces.2011.019.039

    Abstract A two-dimensional heterogeneous hybrid moisture element method (HHMEM) for modeling transient moisture diffusion in permeable fiber-reinforced polymer composites is proposed in this paper.
    The HHMEM scheme is based on a heterogeneous hybrid moisture element (HHME), whose properties are determined by equivalent moisture capacitance and conductance matrixes calculated using the conventional finite element formulation with the similarity mass/stiffness property and matrix condensing operations. A coupled HHME-FE scheme is developed and implemented in computer codes MATLAB to analyze the transient moisture diffusion characteristics of polymeric composite materials containing multiple permeable fibers. The analysis commences by comparing the performance of the proposed… More >

  • Open Access

    ABSTRACT

    Fluid transport in a Heterogeneous Porous Medium: Experiments, Mathematics and Computations

    A.P. Selvadurai

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.3, pp. 67-68, 2011, DOI:10.3970/icces.2011.016.067

    Abstract Theme Lecture More >

  • Open Access

    ABSTRACT

    Damage Modeling of Heterogeneous Materials Using Multiscale Approach

    Jurica Sorić*, Tomislav Lesičar, Filip Putar, Zdenko Tonković

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.22, No.4, pp. 181-183, 2019, DOI:10.32604/icces.2019.04554

    Abstract The paper deals with the novel multiscale approaches for modelling of both quasi-brittle and ductile damage responses of heterogeneous materials. The damage is induced at the microstructural level and, after the homogenization procedure, it is included in the constitutive stiffness of the material point at macrolevel. The derived algorithms are implemented into the finite element software ABAQUS. The new two-scale transition procedures have been verified on the standard benchmark examples. More >

Displaying 101-110 on page 11 of 141. Per Page