Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    Effect of Bogie Cavity End Wall Inclination on Flow Field and Aerodynamic Noise in the Bogie Region of High-Speed Trains

    Jiawei Shi, Jiye Zhang*

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.2, pp. 2175-2195, 2024, DOI:10.32604/cmes.2023.043539

    Abstract Combining the detached eddy simulation (DES) method and Ffowcs Williams-Hawkings (FW-H) equation, the effect of bogie cavity end wall inclination on the flow field and aerodynamic noise in the bogie region is numerically studied. First, the simulation is conducted based on a simplified cavity-bogie model, including five cases with different inclination angles of the front and rear walls of the cavity. By comparing and analyzing the flow field and acoustic results of the five cases, the influence of the regularity and mechanism of the bogie cavity end wall inclination on the flow field and the aerodynamic noise of the bogie… More >

  • Open Access

    ARTICLE

    Influence of Anteroposterior Symmetrical Aero-Wings on the Aerodynamic Performance of High-Speed Train

    Peiheng He, Jiye Zhang*, Lan Zhang, Jiaqi Wang, Yuzhe Ma

    CMES-Computer Modeling in Engineering & Sciences, Vol.139, No.1, pp. 937-953, 2024, DOI:10.32604/cmes.2023.043700

    Abstract The running stability of high-speed train is largely constrained by the wheel-rail coupling relationship, and the continuous wear between the wheel and rail surfaces will profoundly affect the dynamic performance of the train. In recent years, under the background of increasing train speed, some scientific researchers have proposed a new idea of using the lift force generated by the aerodynamic wings (aero-wing) installed on the roof to reduce the sprung load of the carriage in order to alleviate the wear and tear of the wheel and rail. Based on the bidirectional running characteristics of high-speed train, this paper proposes a… More >

  • Open Access

    ARTICLE

    Influences of the Fresh Air Volume on the Removal of Cough-Released Droplets in a Passenger Car of a High-Speed Train Using CFD

    Jun Xu1, Kai Bi1, Yibin Lu2,*, Tiantian Wang2,3, Hang Zhang2, Zeyuan Zheng3, Fushan Shi3, Yaxin Zheng3, Xiaoying Li2, Jingping Yang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2727-2748, 2024, DOI:10.32604/cmes.2023.031341

    Abstract The spread and removal of pollution sources, namely, cough-released droplets in three different areas (front, middle, and rear areas) of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics (CFD) method. In addition, the structure of indoor flow fields was also analysed. The results show that the large eddies are more stable and flow faster in the air supply under Mode 2 (fresh air volume: 2200 m3/h) compared to Mode 1 (fresh air volume: 1100 m3/h). By analysing the spreading process of droplets sprayed at different locations in the passenger car… More >

  • Open Access

    ARTICLE

    Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train

    Tian Li1,2,*, Hao Liang1, Zerui Xiang2, Jiye Zhang1

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.2, pp. 463-473, 2024, DOI:10.32604/fdmp.2023.043618

    Abstract A relatively high aerodynamic drag is an important factor that hinders the further acceleration of high-speed trains. Using the shear stress transport (SST) k-ω turbulence model, the effect of various vortex generator types on the aerodynamic characteristics of an ICE2 (Inter-city Electricity) train has been investigated. The results indicate that the vortex generators with wider triangle, trapezoid, and micro-ramp arranged on the surface of the tail car can significantly change the distribution of surface pressure and affect the vorticity intensity in the wake. This alteration effectively reduces the resistance of the tail car. Meanwhile, the micro-ramp vortex generator with its… More > Graphic Abstract

    Numerical Study on the Effect of Vortex Generators on the Aerodynamic Drag of a High-Speed Train

  • Open Access

    REVIEW

    Research Progress of Aerodynamic Multi-Objective Optimization on High-Speed Train Nose Shape

    Zhiyuan Dai, Tian Li*, Weihua Zhang, Jiye Zhang

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1461-1489, 2023, DOI:10.32604/cmes.2023.028677

    Abstract The aerodynamic optimization design of high-speed trains (HSTs) is crucial for energy conservation, environmental preservation, operational safety, and speeding up. This study aims to review the current state and progress of the aerodynamic multi-objective optimization of HSTs. First, the study explores the impact of train nose shape parameters on aerodynamic performance. The parameterization methods involved in the aerodynamic multiobjective optimization of HSTs are summarized and classified as shape-based and disturbance-based parameterization methods. Meanwhile, the advantages and limitations of each parameterization method, as well as the applicable scope, are briefly discussed. In addition, the NSGA-II algorithm, particle swarm optimization algorithm, standard… More >

  • Open Access

    ARTICLE

    A Fast Approach for Predicting Aerodynamic Noise Sources of High-Speed Train Running in Tunnel

    Deng Qin1, Tian Li1,*, Honglin Wang2, Jizhong Yang3, Yao Jiang3, Jiye Zhang1, Haiquan Bi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.130, No.3, pp. 1371-1386, 2022, DOI:10.32604/cmes.2022.018480

    Abstract The aerodynamic noise of high-speed trains passing through a tunnel has gradually become an important issue. Numerical approaches for predicting the aerodynamic noise sources of high-speed trains running in tunnels are the key to alleviating aerodynamic noise issues. In this paper, two typical numerical methods are used to calculate the aerodynamic noise of high-speed trains. These are the static method combined with non-reflective boundary conditions and the dynamic mesh method combined with adaptive mesh. The fluctuating pressure, flow field and aerodynamic noise source are numerically simulated using the above methods. The results show that the fluctuating pressure, flow field structure… More >

  • Open Access

    ARTICLE

    A Numerical Study of the Aerodynamic Characteristics of a High-Speed Train under the Effect of Crosswind and Rain

    Haiqing Li1, Mengge Yu1, *, Qian Zhang1, Heng Wen1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 77-90, 2020, DOI:10.32604/fdmp.2020.07797

    Abstract The performances of high-speed trains in the presence of coupling effects with crosswind and rain have attracted great attention in recent years. The objective of the present paper was to investigate the aerodynamic characteristics of a high-speed train under such conditions in the framework of an Eulerian-Lagrangian approach. An aerodynamic model of a high-speed train was first set up, and the side force coefficient obtained from numerical simulation was compared with that provided by wind tunnel experiments to verify the accuracy of the approach. Then, the effects of the yaw angle, the resultant wind speed, and the rainfall rate on… More >

  • Open Access

    ARTICLE

    Operational Safety Assessment of a High-Speed Train Exposed to the Strong Gust Wind

    Mengge Yu1, 2, Zhenkuan Pan3, *, Jiali Liu4, Haiqing Li1

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 55-66, 2020, DOI:10.32604/fdmp.2020.07774

    Abstract The operational safety characteristics of trains exposed to a strong wind have caused great concern in recent years. In the present paper, the effect of the strong gust wind on a high-speed train is investigated. A typical gust wind model for any wind angle, named “Chinese hat gust wind model”, was first constructed, and an algorithm for computing the aerodynamic loads was elaborated accordingly. A vehicle system dynamic model was then set up in order to investigate the vehicle system dynamic characteristics. The assessment of the operational safety has been conducted by means of characteristic wind curves (CWC). As some… More >

  • Open Access

    ARTICLE

    Numerical Investigation of the Deposition Characteristics of Snow on the Bogie of a High-Speed Train

    Lu Cai1, Zhen Lou1, Nan Liu2, Chao An2, Jiye Zhang1, *

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 41-53, 2020, DOI:10.32604/fdmp.2020.07731

    Abstract To investigate the deposition distribution of snow particles in the bogie surfaces of a high-speed train, a snow particle deposition model, based on the critical capture velocity and the critical shear velocity, was elaborated. Simulations based on the unsteady Reynolds-Averaged Navier-Stokes (RANS) approach coupled with Discrete Phase Model (DPM) were used to analyze the motion of snow particles. The results show that the cross beam of the bogie frame, the anti-snake damper, the intermediate brake clamps in the rear wheels, the traction rod and the anti-rolling torsion bar are prone to accumulate snow. The accumulation mass relating to the vertical… More >

  • Open Access

    ARTICLE

    A Study on the Reduction of the Aerodynamic Drag and Noise Generated By the Roof Air Conditioner of High-Speed Trains

    Jiali Liu1, Mengge Yu2, *, Dawei Chen1, Zhigang Yang3

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 21-30, 2020, DOI:10.32604/fdmp.2020.07658

    Abstract In order to investigate how the aerodynamic drag and noise produced by the roof air conditioner of a high-speed train can be reduced, the related unsteady flow in the near-field was computed using the method of large eddy simulation. In this way, the aerodynamic source for noise generation has initially been determined. Then, the far-field aerodynamic noise has been computed in the framework of the Lighthill’s acoustics analogy theory. The propulsion height and flow-guide angle of the roof air conditioner were set as the design variables. According to the computational results, a lower propulsion height or flow-guide angle is beneficial… More >

Displaying 1-10 on page 1 of 13. Per Page