Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (13)
  • Open Access

    ARTICLE

    An Investigation into the Effects of the Reynolds Number on High-Speed Trains Using a Low Temperature Wind Tunnel Test Facility

    Yundong Han1, Dawei Chen1, Shaoqing Liu1, Gang Xu2

    FDMP-Fluid Dynamics & Materials Processing, Vol.16, No.1, pp. 1-19, 2020, DOI:10.32604/fdmp.2020.06525

    Abstract A series of tests have been conducted using a Cryogenic Wind Tunnel to study the effect of Reynolds number (Re) on the aerodynamic force and surface pressure experienced by a high speed train. The test Reynolds number has been varied from 1 million to 10 million, which is the highest Reynolds number a wind tunnel has ever achieved for a train test. According to our results, the drag coefficient of the leading car decreases with higher Reynolds number for yaw angles up to 30º. The drag force coefficient drops about 0.06 when Re is raised from 1 million to 10… More >

  • Open Access

    ARTICLE

    Experimental and Numerical Investigation on the External Aerodynamic Noise of High-Speed Train

    Shijie Jiang*, Song Yang, Bohong Zhang, Bangchun Wen

    Sound & Vibration, Vol.53, No.4, pp. 129-138, 2019, DOI:10.32604/sv.2019.04048

    Abstract Aerodynamic noise is the dominant noise source of the high-speed train. It not only seriously affects the passenger comfort and people’s normal life along the railway line, but also may cause fatigue damage to the surrounding equipment and buildings. This manuscript carried out the simulation and experimental study on the external aerodynamic noise of high-speed train, in order to increase the understanding of the noise and hence to be better able to control it. The on-line tests were performed to verify that it is reasonable to simplify the high-speed train model. The turbulent air flow model was then developed, and… More >

  • Open Access

    ARTICLE

    Model Predictive Control for High-speed Train with Automatic Trajectory Configuration and Tractive Force Optimization

    Yonghua Zhou1 , Xun Yang1 , Chao Mi1

    CMES-Computer Modeling in Engineering & Sciences, Vol.90, No.6, pp. 415-437, 2013, DOI:10.3970/cmes.2013.090.415

    Abstract High-speed train transportation is organized in a way of globally centralized planning and locally autonomous adjustment with the real-time known positions, speeds and other state information of trains. The hierarchical integration architecture composed of top, middle and bottom levels is proposed based on model predictive control (MPC) for the real-time scheduling and control. The middle-level trajectory configuration and tractive force setpoints play a critical role in fulfilling the top-level scheduling commands and guaranteeing the controllability of bottomlevel train operations. In the middle-level MPC-based train operation planning, the continuous cellular automaton model of train movements is proposed to dynamically configure the… More >

Displaying 11-20 on page 2 of 13. Per Page