Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    An Efficient Explainable AI Model for Accurate Brain Tumor Detection Using MRI Images

    Fatma M. Talaat1,2,*, Mohamed Salem1, Mohamed Shehata3,4,*, Warda M. Shaban5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2325-2358, 2025, DOI:10.32604/cmes.2025.067195 - 31 August 2025

    Abstract The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists. The rise in patient numbers has substantially elevated the data processing volume, making conventional methods both costly and inefficient. Recently, Artificial Intelligence (AI) has gained prominence for developing automated systems that can accurately diagnose or segment brain tumors in a shorter time frame. Many researchers have examined various algorithms that provide both speed and accuracy in detecting and classifying brain tumors. This paper proposes a new model based on AI, called the Brain Tumor Detection (BTD)… More >

  • Open Access

    ARTICLE

    Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control

    Xin Mao*, Hongsheng Su, Jingxiu Li

    Energy Engineering, Vol.121, No.12, pp. 3929-3951, 2024, DOI:10.32604/ee.2024.057106 - 22 November 2024

    Abstract The virtual synchronous generator (VSG) technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources. However, the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response. In light of the issues above, a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control (ILADRC) is put forth for consideration. Firstly, an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop; then, the… More >

  • Open Access

    ARTICLE

    Double-Layer-Optimizing Method of Hybrid Energy Storage Microgrid Based on Improved Grey Wolf Optimization

    Xianjing Zhong1, Xianbo Sun1,*, Yuhan Wu2

    CMC-Computers, Materials & Continua, Vol.76, No.2, pp. 1599-1619, 2023, DOI:10.32604/cmc.2023.039912 - 30 August 2023

    Abstract To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation, a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization (IGWO) is proposed. Firstly, building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system. Secondly, the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function, and the minimum peak-to-valley of the microgrid’s daily output is taken as the… More >

Displaying 1-10 on page 1 of 3. Per Page