Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (58)
  • Open Access

    ARTICLE

    A New Image Encryption Algorithm Based on Cantor Diagonal Matrix and Chaotic Fractal Matrix

    Hongyu Zhao1,2, Shengsheng Wang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-25, 2026, DOI:10.32604/cmc.2025.068426 - 10 November 2025

    Abstract Driven by advancements in mobile internet technology, images have become a crucial data medium. Ensuring the security of image information during transmission has thus emerged as an urgent challenge. This study proposes a novel image encryption algorithm specifically designed for grayscale image security. This research introduces a new Cantor diagonal matrix permutation method. The proposed permutation method uses row and column index sequences to control the Cantor diagonal matrix, where the row and column index sequences are generated by a spatiotemporal chaotic system named coupled map lattice (CML). The high initial value sensitivity of the… More >

  • Open Access

    ARTICLE

    Sine-Polynomial Chaotic Map (SPCM): A Decent Cryptographic Solution for Image Encryption in Wireless Sensor Networks

    David S. Bhatti1,*, Annas W. Malik2, Haeung Choi1, Ki-Il Kim3,*

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 2157-2177, 2025, DOI:10.32604/cmc.2025.068360 - 29 August 2025

    Abstract Traditional chaotic maps struggle with narrow chaotic ranges and inefficiencies, limiting their use for lightweight, secure image encryption in resource-constrained Wireless Sensor Networks (WSNs). We propose the SPCM, a novel one-dimensional discontinuous chaotic system integrating polynomial and sine functions, leveraging a piecewise function to achieve a broad chaotic range () and a high Lyapunov exponent (5.04). Validated through nine benchmarks, including standard randomness tests, Diehard tests, and Shannon entropy (3.883), SPCM demonstrates superior randomness and high sensitivity to initial conditions. Applied to image encryption, SPCM achieves 0.152582 s (39% faster than some techniques) and 433.42 More >

  • Open Access

    ARTICLE

    Hyper-Chaos and CNN-Based Image Encryption Scheme for Wireless Communication Transmission

    Gang Liu1, Guosheng Xu1,*, Chenyu Wang1, Guoai Xu2

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4851-4868, 2025, DOI:10.32604/cmc.2025.066331 - 30 July 2025

    Abstract In wireless communication transmission, image encryption plays a key role in protecting data privacy against unauthorized access. However, conventional encryption methods often face challenges in key space security, particularly when relying on chaotic sequences, which may exhibit vulnerabilities to brute-force and predictability-based attacks. To address the limitations, this paper presents a robust and efficient encryption scheme that combines iterative hyper-chaotic systems and Convolutional Neural Networks (CNNs). Firstly, a novel two-dimensional iterative hyper-chaotic system is proposed because of its complex dynamic behavior and expanded parameter space, which can enhance the key space complexity and randomness, ensuring… More >

  • Open Access

    ARTICLE

    Secure Medical Image Transmission Using Chaotic Encryption and Blockchain-Based Integrity Verification

    Rim Amdouni1,2,*, Mahdi Madani3, Mohamed Ali Hajjaji1,4, El Bay Bourennane3, Mohamed Atri5

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5527-5553, 2025, DOI:10.32604/cmc.2025.065356 - 30 July 2025

    Abstract Ensuring the integrity and confidentiality of patient medical information is a critical priority in the healthcare sector. In the context of security, this paper proposes a novel encryption algorithm that integrates Blockchain technology, aiming to improve the security and privacy of transmitted data. The proposed encryption algorithm is a block-cipher image encryption scheme based on different chaotic maps: The logistic Map, the Tent Map, and the Henon Map used to generate three encryption keys. The proposed block-cipher system employs the Hilbert curve to perform permutation while a generated chaos-based S-Box is used to perform substitution.… More >

  • Open Access

    ARTICLE

    Enhancing Post-Quantum Information Security: A Novel Two-Dimensional Chaotic System for Quantum Image Encryption

    Fatima Asiri*, Wajdan Al Malwi

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.2, pp. 2053-2077, 2025, DOI:10.32604/cmes.2025.064348 - 30 May 2025

    Abstract Ensuring information security in the quantum era is a growing challenge due to advancements in cryptographic attacks and the emergence of quantum computing. To address these concerns, this paper presents the mathematical and computer modeling of a novel two-dimensional (2D) chaotic system for secure key generation in quantum image encryption (QIE). The proposed map employs trigonometric perturbations in conjunction with rational-saturation functions and hence, named as Trigonometric-Rational-Saturation (TRS) map. Through rigorous mathematical analysis and computational simulations, the map is extensively evaluated for bifurcation behaviour, chaotic trajectories, and Lyapunov exponents. The security evaluation validates the map’s… More >

  • Open Access

    ARTICLE

    Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps: An Ultra-Wide Range Dynamics for Image Encryption

    De Rosal Ignatius Moses Setiadi1,*, T. Sutojo1, Supriadi Rustad1, Muhamad Akrom1, Sudipta Kr Ghosal2, Minh T. Nguyen3, Arnold Adimabua Ojugo4

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2161-2188, 2025, DOI:10.32604/cmc.2025.063729 - 16 April 2025

    Abstract Data security has become a growing priority due to the increasing frequency of cyber-attacks, necessitating the development of more advanced encryption algorithms. This paper introduces Single Qubit Quantum Logistic-Sine XYZ-Rotation Maps (SQQLSR), a quantum-based chaos map designed to generate one-dimensional chaotic sequences with an ultra-wide parameter range. The proposed model leverages quantum superposition using Hadamard gates and quantum rotations along the X, Y, and Z axes to enhance randomness. Extensive numerical experiments validate the effectiveness of SQQLSR. The proposed method achieves a maximum Lyapunov exponent (LE) of ≈55.265, surpassing traditional chaotic maps in unpredictability. The bifurcation analysis… More >

  • Open Access

    ARTICLE

    Joint Watermarking and Encryption for Social Image Sharing

    Conghuan Ye1,*, Shenglong Tan1, Shi Li1, Jun Wang1, Qiankun Zuo1, Bing Xiong2

    CMC-Computers, Materials & Continua, Vol.83, No.2, pp. 2927-2946, 2025, DOI:10.32604/cmc.2025.062051 - 16 April 2025

    Abstract With the fast development of multimedia social platforms, content dissemination on social media platforms is becoming more popular. Social image sharing can also raise privacy concerns. Image encryption can protect social images. However, most existing image protection methods cannot be applied to multimedia social platforms because of encryption in the spatial domain. In this work, the authors propose a secure social image-sharing method with watermarking/fingerprinting and encryption. First, the fingerprint code with a hierarchical community structure is designed based on social network analysis. Then, discrete wavelet transform (DWT) from block discrete cosine transform (DCT) directly… More >

  • Open Access

    ARTICLE

    Chaos-Based Novel Watermarked Satellite Image Encryption Scheme

    Mohamed Medani1, Yahia Said2, Nashwan Adnan Othman3,4, Farrukh Yuldashev5, Mohamed Kchaou6, Faisal Khaled Aldawood6, Bacha Rehman7,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 1049-1070, 2025, DOI:10.32604/cmes.2025.063405 - 11 April 2025

    Abstract Satellite images are widely used for remote sensing and defence applications, however, they are subject to a variety of threats. To ensure the security and privacy of these images, they must be watermarked and encrypted before communication. Therefore, this paper proposes a novel watermarked satellite image encryption scheme based on chaos, Deoxyribonucleic Acid (DNA) sequence, and hash algorithm. The watermark image, DNA sequence, and plaintext image are passed through the Secure Hash Algorithm (SHA-512) to compute the initial condition (keys) for the Tangent-Delay Ellipse Reflecting Cavity Map (TD-ERCS), Henon, and Duffing chaotic maps, respectively. Through More >

  • Open Access

    ARTICLE

    Improved Resilience of Image Encryption Based on Hybrid TEA and RSA Techniques

    Muath AlShaikh1,*, Ahmed Manea Alkhalifah2, Sultan Alamri3

    Computer Systems Science and Engineering, Vol.49, pp. 353-376, 2025, DOI:10.32604/csse.2025.062433 - 21 March 2025

    Abstract Data security is crucial for improving the confidentiality, integrity, and authenticity of the image content. Maintaining these security factors poses significant challenges, particularly in healthcare, business, and social media sectors, where information security and personal privacy are paramount. The cryptography concept introduces a solution to these challenges. This paper proposes an innovative hybrid image encryption algorithm capable of encrypting several types of images. The technique merges the Tiny Encryption Algorithm (TEA) and Rivest-Shamir-Adleman (RSA) algorithms called (TEA-RSA). The performance of this algorithm is promising in terms of cost and complexity, an encryption time which is… More >

  • Open Access

    ARTICLE

    Secure Medical Image Retrieval Based on Multi-Attention Mechanism and Triplet Deep Hashing

    Shaozheng Zhang, Qiuyu Zhang*, Jiahui Tang, Ruihua Xu

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 2137-2158, 2025, DOI:10.32604/cmc.2024.057269 - 17 February 2025

    Abstract Medical institutions frequently utilize cloud servers for storing digital medical imaging data, aiming to lower both storage expenses and computational expenses. Nevertheless, the reliability of cloud servers as third-party providers is not always guaranteed. To safeguard against the exposure and misuse of personal privacy information, and achieve secure and efficient retrieval, a secure medical image retrieval based on a multi-attention mechanism and triplet deep hashing is proposed in this paper (abbreviated as MATDH). Specifically, this method first utilizes the contrast-limited adaptive histogram equalization method applicable to color images to enhance chest X-ray images. Next, a… More >

Displaying 1-10 on page 1 of 58. Per Page