Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (23)
  • Open Access

    ARTICLE

    A Deep Learning Framework for Heart Disease Prediction with Explainable Artificial Intelligence

    Muhammad Adil1, Nadeem Javaid1,*, Imran Ahmed2, Abrar Ahmed3, Nabil Alrajeh4,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-20, 2026, DOI:10.32604/cmc.2025.071215 - 10 November 2025

    Abstract Heart disease remains a leading cause of mortality worldwide, emphasizing the urgent need for reliable and interpretable predictive models to support early diagnosis and timely intervention. However, existing Deep Learning (DL) approaches often face several limitations, including inefficient feature extraction, class imbalance, suboptimal classification performance, and limited interpretability, which collectively hinder their deployment in clinical settings. To address these challenges, we propose a novel DL framework for heart disease prediction that integrates a comprehensive preprocessing pipeline with an advanced classification architecture. The preprocessing stage involves label encoding and feature scaling. To address the issue of… More >

  • Open Access

    ARTICLE

    STPEIC: A Swin Transformer-Based Framework for Interpretable Post-Earthquake Structural Classification

    Xinrui Ma, Shizhi Chen*

    Structural Durability & Health Monitoring, Vol.19, No.6, pp. 1745-1767, 2025, DOI:10.32604/sdhm.2025.071148 - 17 November 2025

    Abstract The rapid and accurate assessment of structural damage following an earthquake is crucial for effective emergency response and post-disaster recovery. Traditional manual inspection methods are often slow, labor-intensive, and prone to human error. To address these challenges, this study proposes STPEIC (Swin Transformer-based Framework for Interpretable Post-Earthquake Structural Classification), an automated deep learning framework designed for analyzing post-earthquake images. STPEIC performs two key tasks: structural components classification and damage level classification. By leveraging the hierarchical attention mechanisms of the Swin Transformer (Shifted Window Transformer), the model achieves 85.4% accuracy in structural component classification and 85.1% More >

  • Open Access

    ARTICLE

    Systematic Analysis of Latent Fingerprint Patterns through Fractionally Optimized CNN Model for Interpretable Multi-Output Identification

    Mubeen Sabir1, Zeshan Aslam Khan2,*, Muhammad Waqar2, Khizer Mehmood1, Muhammad Junaid Ali Asif Raja3, Naveed Ishtiaq Chaudhary4, Khalid Mehmood Cheema5, Muhammad Asif Zahoor Raja4, Muhammad Farhan Khan6, Syed Sohail Ahmed7

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.1, pp. 807-855, 2025, DOI:10.32604/cmes.2025.068131 - 30 October 2025

    Abstract Fingerprint classification is a biometric method for crime prevention. For the successful completion of various tasks, such as official attendance, banking transactions, and membership requirements, fingerprint classification methods require improvement in terms of accuracy, speed, and the interpretability of non-linear demographic features. Researchers have introduced several CNN-based fingerprint classification models with improved accuracy, but these models often lack effective feature extraction mechanisms and complex multineural architectures. In addition, existing literature primarily focuses on gender classification rather than accurately, efficiently, and confidently classifying hands and fingers through the interpretability of prominent features. This research seeks to… More >

  • Open Access

    ARTICLE

    Interpretable Federated Learning Model for Cyber Intrusion Detection in Smart Cities with Privacy-Preserving Feature Selection

    Muhammad Sajid Farooq1, Muhammad Saleem2, M.A. Khan3,4, Muhammad Farrukh Khan5, Shahan Yamin Siddiqui6, Muhammad Shoukat Aslam7, Khan M. Adnan8,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5183-5206, 2025, DOI:10.32604/cmc.2025.069641 - 23 October 2025

    Abstract The rapid evolution of smart cities through IoT, cloud computing, and connected infrastructures has significantly enhanced sectors such as transportation, healthcare, energy, and public safety, but also increased exposure to sophisticated cyber threats. The diversity of devices, high data volumes, and real-time operational demands complicate security, requiring not just robust intrusion detection but also effective feature selection for relevance and scalability. Traditional Machine Learning (ML) based Intrusion Detection System (IDS) improves detection but often lacks interpretability, limiting stakeholder trust and timely responses. Moreover, centralized feature selection in conventional IDS compromises data privacy and fails to… More >

  • Open Access

    ARTICLE

    Explainable Transformer-Based Approach for Dental Disease Prediction

    Sari Masri, Ahmad Hasasneh*

    Computer Systems Science and Engineering, Vol.49, pp. 481-497, 2025, DOI:10.32604/csse.2025.068616 - 10 October 2025

    Abstract Diagnosing dental disorders using routine photographs can significantly reduce chair-side workload and expand access to care. However, most AI-based image analysis systems suffer from limited interpretability and are trained on class-imbalanced datasets. In this study, we developed a balanced, transformer-based pipeline to detect three common dental disorders: tooth discoloration, calculus, and hypodontia, from standard color images. After applying a color-standardized preprocessing pipeline and performing stratified data splitting, the proposed vision transformer model was fine-tuned and subsequently evaluated using standard classification benchmarks. The model achieved an impressive accuracy of 98.94%, with precision, recall and F1 scores More >

  • Open Access

    ARTICLE

    SGO-DRE: A Squid Game Optimization-Based Ensemble Method for Accurate and Interpretable Skin Disease Diagnosis

    Areeba Masood Siddiqui1,2,*, Hyder Abbas3,4, Muhammad Asim5,6,*, Abdelhamied A. Ateya5, Hanaa A. Abdallah7

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.3, pp. 3135-3168, 2025, DOI:10.32604/cmes.2025.069926 - 30 September 2025

    Abstract Timely and accurate diagnosis of skin diseases is crucial as conventional methods are time-consuming and prone to errors. Traditional trial-and-error approaches often aggregate multiple models without optimization by resulting in suboptimal performance. To address these challenges, we propose a novel Squid Game Optimization-Dimension Reduction-based Ensemble (SGO-DRE) method for the precise diagnosis of skin diseases. Our approach begins by selecting pre-trained models named MobileNetV1, DenseNet201, and Xception for robust feature extraction. These models are enhanced with dimension reduction blocks to improve efficiency. To tackle the aggregation problem of various models, we leverage the Squid Game Optimization… More >

  • Open Access

    ARTICLE

    Interpretable Vulnerability Detection in LLMs: A BERT-Based Approach with SHAP Explanations

    Nouman Ahmad*, Changsheng Zhang

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3321-3334, 2025, DOI:10.32604/cmc.2025.067044 - 23 September 2025

    Abstract Source code vulnerabilities present significant security threats, necessitating effective detection techniques. Rigid rule-sets and pattern matching are the foundation of traditional static analysis tools, which drown developers in false positives and miss context-sensitive vulnerabilities. Large Language Models (LLMs) like BERT, in particular, are examples of artificial intelligence (AI) that exhibit promise but frequently lack transparency. In order to overcome the issues with model interpretability, this work suggests a BERT-based LLM strategy for vulnerability detection that incorporates Explainable AI (XAI) methods like SHAP and attention heatmaps. Furthermore, to ensure auditable and comprehensible choices, we present a… More >

  • Open Access

    ARTICLE

    Expert System Based on Ontology and Interpretable Machine Learning to Assist in the Discovery of Railway Accident Scenarios

    Habib Hadj-Mabrouk*

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 4399-4430, 2025, DOI:10.32604/cmc.2025.067143 - 30 July 2025

    Abstract A literature review on AI applications in the field of railway safety shows that the implemented approaches mainly concern the operational, maintenance, and feedback phases following railway incidents or accidents. These approaches exploit railway safety data once the transport system has received authorization for commissioning. However, railway standards and regulations require the development of a safety management system (SMS) from the specification and design phases of the railway system. This article proposes a new AI approach for analyzing and assessing safety from the specification and design phases of the railway system with a view to… More >

  • Open Access

    ARTICLE

    Machine Learning and Explainable AI-Guided Design and Optimization of High-Entropy Alloys as Binder Phases for WC-Based Cemented Carbides

    Jianping Li, Wan Xiong, Tenghang Zhang, Hao Cheng, Kun Shen, Miaojin He, Yu Zhang, Junxin Song, Ying Deng*, Qiaowang Chen*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2189-2216, 2025, DOI:10.32604/cmc.2025.066128 - 03 July 2025

    Abstract Tungsten carbide-based (WC-based) cemented carbides are widely recognized as high-performance tool materials. Traditionally, single metals such as cobalt (Co) or nickel (Ni) serve as the binder phase, providing toughness and structural integrity. Replacing this phase with high-entropy alloys (HEAs) offers a promising approach to enhancing mechanical properties and addressing sustainability challenges. However, the complex multi-element composition of HEAs complicates conventional experimental design, making it difficult to explore the vast compositional space efficiently. Traditional trial-and-error methods are time-consuming, resource-intensive, and often ineffective in identifying optimal compositions. In contrast, artificial intelligence (AI)-driven approaches enable rapid screening and… More >

  • Open Access

    ARTICLE

    Enhanced Wheat Disease Detection Using Deep Learning and Explainable AI Techniques

    Hussam Qushtom, Ahmad Hasasneh*, Sari Masri

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 1379-1395, 2025, DOI:10.32604/cmc.2025.061995 - 09 June 2025

    Abstract This study presents an enhanced convolutional neural network (CNN) model integrated with Explainable Artificial Intelligence (XAI) techniques for accurate prediction and interpretation of wheat crop diseases. The aim is to streamline the detection process while offering transparent insights into the model’s decision-making to support effective disease management. To evaluate the model, a dataset was collected from wheat fields in Kotli, Azad Kashmir, Pakistan, and tested across multiple data splits. The proposed model demonstrates improved stability, faster convergence, and higher classification accuracy. The results show significant improvements in prediction accuracy and stability compared to prior works,… More >

Displaying 1-10 on page 1 of 23. Per Page