Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (37)
  • Open Access

    ARTICLE

    Impact of Data Processing Techniques on AI Models for Attack-Based Imbalanced and Encrypted Traffic within IoT Environments

    Yeasul Kim1, Chaeeun Won1, Hwankuk Kim2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-28, 2026, DOI:10.32604/cmc.2025.069608 - 10 November 2025

    Abstract With the increasing emphasis on personal information protection, encryption through security protocols has emerged as a critical requirement in data transmission and reception processes. Nevertheless, IoT ecosystems comprise heterogeneous networks where outdated systems coexist with the latest devices, spanning a range of devices from non-encrypted ones to fully encrypted ones. Given the limited visibility into payloads in this context, this study investigates AI-based attack detection methods that leverage encrypted traffic metadata, eliminating the need for decryption and minimizing system performance degradation—especially in light of these heterogeneous devices. Using the UNSW-NB15 and CICIoT-2023 dataset, encrypted and… More >

  • Open Access

    ARTICLE

    A New Dataset for Network Flooding Attacks in SDN-Based IoT Environments

    Nader Karmous1, Wadii Jlassi1, Mohamed Ould-Elhassen Aoueileyine1, Imen Filali2,*, Ridha Bouallegue1

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.3, pp. 4363-4393, 2025, DOI:10.32604/cmes.2025.074178 - 23 December 2025

    Abstract This paper introduces a robust Distributed Denial-of-Service attack detection framework tailored for Software-Defined Networking based Internet of Things environments, built upon a novel, synthetic multi-vector dataset generated in a Mininet-Ryu testbed using real-time flow-based labeling. The proposed model is based on the XGBoost algorithm, optimized with Principal Component Analysis for dimensionality reduction, utilizing lightweight flow-level features extracted from OpenFlow statistics to classify attacks across critical IoT protocols including TCP, UDP, HTTP, MQTT, and CoAP. The model employs lightweight flow-level features extracted from OpenFlow statistics to ensure low computational overhead and fast processing. Performance was rigorously… More >

  • Open Access

    REVIEW

    Attribute-Based Encryption for IoT Environments—A Critical Survey

    Daskshnamoorthy Manivannan*

    Journal on Internet of Things, Vol.7, pp. 71-97, 2025, DOI:10.32604/jiot.2025.072809 - 24 December 2025

    Abstract Attribute-Based Encryption (ABE) secures data by tying decryption rights to user attributes instead of identities, enabling fine-grained access control. However, many ABE schemes are unsuitable for Internet of Things (IoT) due to limited device resources. This paper critically surveys ABE schemes developed specifically for IoT over the past decade, examining their evolution, strengths, limitations, and access control capabilities. It provides insights into their security, effectiveness, and real-world applicability, highlights the current state of ABE in securing IoT data and access, and discusses remaining challenges and open issues. More >

  • Open Access

    ARTICLE

    MITRE ATT&CK-Driven Threat Analysis for Edge-IoT Environment and a Quantitative Risk Scoring Model

    Tae-hyeon Yun1, Moohong Min2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2707-2731, 2025, DOI:10.32604/cmes.2025.072357 - 26 November 2025

    Abstract The dynamic, heterogeneous nature of Edge computing in the Internet of Things (Edge-IoT) and Industrial IoT (IIoT) networks brings unique and evolving cybersecurity challenges. This study maps cyber threats in Edge-IoT/IIoT environments to the Adversarial Tactics, Techniques, and Common Knowledge (ATT&CK) framework by MITRE and introduces a lightweight, data-driven scoring model that enables rapid identification and prioritization of attacks. Inspired by the Factor Analysis of Information Risk model, our proposed scoring model integrates four key metrics: Common Vulnerability Scoring System (CVSS)-based severity scoring, Cyber Kill Chain–based difficulty estimation, Deep Neural Networks-driven detection scoring, and frequency… More >

  • Open Access

    ARTICLE

    ERBM: A Machine Learning-Driven Rule-Based Model for Intrusion Detection in IoT Environments

    Arshad Mehmmod1,#, Komal Batool1,#, Ahthsham Sajid2,3, Muhammad Mansoor Alam2,3, Mazliham MohD Su’ud3,*, Inam Ullah Khan3

    CMC-Computers, Materials & Continua, Vol.83, No.3, pp. 5155-5179, 2025, DOI:10.32604/cmc.2025.062971 - 19 May 2025

    Abstract Traditional rule-based Intrusion Detection Systems (IDS) are commonly employed owing to their simple design and ability to detect known threats. Nevertheless, as dynamic network traffic and a new degree of threats exist in IoT environments, these systems do not perform well and have elevated false positive rates—consequently decreasing detection accuracy. In this study, we try to overcome these restrictions by employing fuzzy logic and machine learning to develop an Enhanced Rule-Based Model (ERBM) to classify the packets better and identify intrusions. The ERBM developed for this approach improves data preprocessing and feature selections by utilizing… More >

  • Open Access

    ARTICLE

    A Novel Hybrid Architecture for Superior IoT Threat Detection through Real IoT Environments

    Bassam Mohammad Elzaghmouri1, Yosef Hasan Fayez Jbara2, Said Elaiwat3, Nisreen Innab4,*, Ahmed Abdelgader Fadol Osman5, Mohammed Awad Mohammed Ataelfadiel5, Farah H. Zawaideh6, Mouiad Fadeil Alawneh7, Asef Al-Khateeb8, Marwan Abu-Zanona8

    CMC-Computers, Materials & Continua, Vol.81, No.2, pp. 2299-2316, 2024, DOI:10.32604/cmc.2024.054836 - 18 November 2024

    Abstract As the Internet of Things (IoT) continues to expand, incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats, necessitating robust defense mechanisms. This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings. Our proposed model combines Convolutional Neural Networks (CNN), Bidirectional Long Short-Term Memory (BLSTM), Gated Recurrent Units (GRU), and Attention mechanisms into a cohesive framework. This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.… More >

  • Open Access

    ARTICLE

    GRU Enabled Intrusion Detection System for IoT Environment with Swarm Optimization and Gaussian Random Forest Classification

    Mohammad Shoab*, Loiy Alsbatin*

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 625-642, 2024, DOI:10.32604/cmc.2024.053721 - 15 October 2024

    Abstract In recent years, machine learning (ML) and deep learning (DL) have significantly advanced intrusion detection systems, effectively addressing potential malicious attacks across networks. This paper introduces a robust method for detecting and categorizing attacks within the Internet of Things (IoT) environment, leveraging the NSL-KDD dataset. To achieve high accuracy, the authors used the feature extraction technique in combination with an auto-encoder, integrated with a gated recurrent unit (GRU). Therefore, the accurate features are selected by using the cuckoo search algorithm integrated particle swarm optimization (PSO), and PSO has been employed for training the features. The More >

  • Open Access

    ARTICLE

    A Novel Graph Structure Learning Based Semi-Supervised Framework for Anomaly Identification in Fluctuating IoT Environment

    Weijian Song1,, Xi Li1,, Peng Chen1,*, Juan Chen1, Jianhua Ren2, Yunni Xia3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.3, pp. 3001-3016, 2024, DOI:10.32604/cmes.2024.048563 - 08 July 2024

    Abstract With the rapid development of Internet of Things (IoT) technology, IoT systems have been widely applied in healthcare, transportation, home, and other fields. However, with the continuous expansion of the scale and increasing complexity of IoT systems, the stability and security issues of IoT systems have become increasingly prominent. Thus, it is crucial to detect anomalies in the collected IoT time series from various sensors. Recently, deep learning models have been leveraged for IoT anomaly detection. However, owing to the challenges associated with data labeling, most IoT anomaly detection methods resort to unsupervised learning techniques.… More >

  • Open Access

    ARTICLE

    A Lightweight Approach (BL-DAC) to Secure Storage Sharing in Cloud-IoT Environments

    Zakariae Dlimi*, Abdellah Ezzati, Said Ben Alla

    Computer Systems Science and Engineering, Vol.47, No.1, pp. 79-103, 2023, DOI:10.32604/csse.2023.037099 - 26 May 2023

    Abstract The growing advent of the Internet of Things (IoT) users is driving the adoption of cloud computing technologies. The integration of IoT in the cloud enables storage and computational capabilities for IoT users. However, security has been one of the main concerns of cloud-integrated IoT. Existing work attempts to address the security concerns of cloud-integrated IoT through authentication, access control, and blockchain-based methods. However, existing frameworks are somewhat limited by scalability, privacy, and centralized structures. To mitigate the existing problems, we propose a blockchain-based distributed access control method for secure storage in the IoT cloud… More >

  • Open Access

    ARTICLE

    Deep Learning Based Energy Consumption Prediction on Internet of Things Environment

    S. Balaji*, S. Karthik

    Intelligent Automation & Soft Computing, Vol.37, No.1, pp. 727-743, 2023, DOI:10.32604/iasc.2023.037409 - 29 April 2023

    Abstract The creation of national energy strategy cannot proceed without accurate projections of future electricity consumption; this is because EC is intimately tied to other forms of energy, such as oil and natural gas. For the purpose of determining and bettering overall energy consumption, there is an urgent requirement for accurate monitoring and calculation of EC at the building level using cutting-edge technology such as data analytics and the internet of things (IoT). Soft computing is a subset of AI that tries to design procedures that are more accurate and reliable, and it has proven to… More >

Displaying 1-10 on page 1 of 37. Per Page