Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    ARTICLE

    Enhancing IoT Security: Quantum-Level Resilience against Threats

    Hosam Alhakami*

    CMC-Computers, Materials & Continua, Vol.78, No.1, pp. 329-356, 2024, DOI:10.32604/cmc.2023.043439

    Abstract The rapid growth of the Internet of Things (IoT) operations has necessitated the incorporation of quantum computing technologies to meet its expanding needs. This integration is motivated by the need to solve the specific issues provided by the expansion of IoT and the potential benefits that quantum computing can offer in this scenario. The combination of IoT and quantum computing creates new privacy and security problems. This study examines the critical need to prevent potential security concerns from quantum computing in IoT applications. We investigate the incorporation of quantum computing approaches within IoT security frameworks,… More >

  • Open Access

    ARTICLE

    Electromyogram Based Personal Recognition Using Attention Mechanism for IoT Security

    Jin Su Kim, Sungbum Pan*

    CMC-Computers, Materials & Continua, Vol.77, No.2, pp. 1663-1678, 2023, DOI:10.32604/cmc.2023.043998

    Abstract As Internet of Things (IoT) technology develops, integrating network functions into diverse equipment introduces new challenges, particularly in dealing with counterfeit issues. Over the past few decades, research efforts have focused on leveraging electromyogram (EMG) for personal recognition, aiming to address security concerns. However, obtaining consistent EMG signals from the same individual is inherently challenging, resulting in data irregularity issues and consequently decreasing the accuracy of personal recognition. Notably, conventional studies in EMG-based personal recognition have overlooked the issue of data irregularities. This paper proposes an innovative approach to personal recognition that combines a siamese… More >

  • Open Access

    ARTICLE

    Malicious Traffic Compression and Classification Technique for Secure Internet of Things

    Yu-Rim Lee1, Na-Eun Park1, Seo-Yi Kim2, Il-Gu Lee1,2,*

    CMC-Computers, Materials & Continua, Vol.76, No.3, pp. 3465-3482, 2023, DOI:10.32604/cmc.2023.041196

    Abstract With the introduction of 5G technology, the application of Internet of Things (IoT) devices is expanding to various industrial fields. However, introducing a robust, lightweight, low-cost, and low-power security solution to the IoT environment is challenging. Therefore, this study proposes two methods using a data compression technique to detect malicious traffic efficiently and accurately for a secure IoT environment. The first method, compressed sensing and learning (CSL), compresses an event log in a bitmap format to quickly detect attacks. Then, the attack log is detected using a machine-learning classification model. The second method, precise re-learning… More >

  • Open Access

    ARTICLE

    A Novel Attack on Complex APUFs Using the Evolutionary Deep Convolutional Neural Network

    Ali Ahmadi Shahrakht1, Parisa Hajirahimi2, Omid Rostami3, Diego Martín4,*

    Intelligent Automation & Soft Computing, Vol.37, No.3, pp. 3059-3081, 2023, DOI:10.32604/iasc.2023.040502

    Abstract As the internet of things (IoT) continues to expand rapidly, the significance of its security concerns has grown in recent years. To address these concerns, physical unclonable functions (PUFs) have emerged as valuable tools for enhancing IoT security. PUFs leverage the inherent randomness found in the embedded hardware of IoT devices. However, it has been shown that some PUFs can be modeled by attackers using machine-learning-based approaches. In this paper, a new deep learning (DL)-based modeling attack is introduced to break the resistance of complex XAPUFs. Because training DL models is a problem that falls… More >

  • Open Access

    ARTICLE

    Multi-Attack Intrusion Detection System for Software-Defined Internet of Things Network

    Tarcízio Ferrão1,*, Franklin Manene2, Adeyemi Abel Ajibesin3

    CMC-Computers, Materials & Continua, Vol.75, No.3, pp. 4985-5007, 2023, DOI:10.32604/cmc.2023.038276

    Abstract Currently, the Internet of Things (IoT) is revolutionizing communication technology by facilitating the sharing of information between different physical devices connected to a network. To improve control, customization, flexibility, and reduce network maintenance costs, a new Software-Defined Network (SDN) technology must be used in this infrastructure. Despite the various advantages of combining SDN and IoT, this environment is more vulnerable to various attacks due to the centralization of control. Most methods to ensure IoT security are designed to detect Distributed Denial-of-Service (DDoS) attacks, but they often lack mechanisms to mitigate their severity. This paper proposes… More >

  • Open Access

    ARTICLE

    Blockchain-Based Decentralized Authentication Model for IoT-Based E-Learning and Educational Environments

    Osama A. Khashan1,*, Sultan Alamri2, Waleed Alomoush3, Mutasem K. Alsmadi4, Samer Atawneh2, Usama Mir5

    CMC-Computers, Materials & Continua, Vol.75, No.2, pp. 3133-3158, 2023, DOI:10.32604/cmc.2023.036217

    Abstract In recent times, technology has advanced significantly and is currently being integrated into educational environments to facilitate distance learning and interaction between learners. Integrating the Internet of Things (IoT) into education can facilitate the teaching and learning process and expand the context in which students learn. Nevertheless, learning data is very sensitive and must be protected when transmitted over the network or stored in data centers. Moreover, the identity and the authenticity of interacting students, instructors, and staff need to be verified to mitigate the impact of attacks. However, most of the current security and… More >

  • Open Access

    ARTICLE

    An Anti-Physical Attack Scheme of ARX Lightweight Algorithms for IoT Applications

    Qiang Zhi1, Xiang Jiang1, Hangying Zhang2, Zhengshu Zhou3, Jianguo Ren1, Tong Huang4,*

    Computer Systems Science and Engineering, Vol.46, No.1, pp. 389-402, 2023, DOI:10.32604/csse.2023.035576

    Abstract The lightweight encryption algorithm based on Add-Rotation-XOR (ARX) operation has attracted much attention due to its high software affinity and fast operation speed. However, lacking an effective defense scheme for physical attacks limits the applications of the ARX algorithm. The critical challenge is how to weaken the direct dependence between the physical information and the secret key of the algorithm at a low cost. This study attempts to explore how to improve its physical security in practical application scenarios by analyzing the masking countermeasures of ARX algorithms and the leakage causes. Firstly, we specify a More >

  • Open Access

    ARTICLE

    An Integrated Multilayered Framework for IoT Security Intrusion Decisions

    Hassen Sallay*

    Intelligent Automation & Soft Computing, Vol.36, No.1, pp. 429-444, 2023, DOI:10.32604/iasc.2023.030791

    Abstract Security breaches can seriously harm the Internet of Things (IoT) and Industrial IoT (IIoT) environments. The damage can exceed financial and material losses to threaten human lives. Overcoming these security risks is challenging given IoT ubiquity, complexity, and restricted resources. Security intrusion management is a cornerstone in fortifying the defensive security process. This paper presents an integrated multilayered framework facilitating the orchestration of the security intrusion management process and developing security decision support systems. The proposed framework incorporates four layers with four dedicated processing phases. This paper focuses mainly on the analytical layer. We present… More >

  • Open Access

    ARTICLE

    R-IDPS: Real Time SDN-Based IDPS System for IoT Security

    Noman Mazhar1,2, Rosli Saleh1,*, Reza Zaba1,3, Muhammad Zeeshan4, M. Muzaffar Hameed1, Nauman Khan1

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 3099-3118, 2022, DOI:10.32604/cmc.2022.028285

    Abstract The advent of the latest technologies like the Internet of things (IoT) transforms the world from a manual to an automated way of lifestyle. Meanwhile, IoT sector open numerous security challenges. In traditional networks, intrusion detection and prevention systems (IDPS) have been the key player in the market to ensure security. The challenges to the conventional IDPS are implementation cost, computing power, processing delay, and scalability. Further, online machine learning model training has been an issue. All these challenges still question the IoT network security. There has been a lot of research for IoT based… More >

  • Open Access

    ARTICLE

    Construction and Optimization of TRNG Based Substitution Boxes for Block Encryption Algorithms

    Muhammad Fahad Khan1,2,*, Khalid Saleem1, Mohammed Alotaibi3, Mohammad Mazyad Hazzazi4, Eid Rehman2, Aaqif Afzaal Abbasi2, Muhammad Asif Gondal5

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 2679-2696, 2022, DOI:10.32604/cmc.2022.027655

    Abstract Internet of Things is an ecosystem of interconnected devices that are accessible through the internet. The recent research focuses on adding more smartness and intelligence to these edge devices. This makes them susceptible to various kinds of security threats. These edge devices rely on cryptographic techniques to encrypt the pre-processed data collected from the sensors deployed in the field. In this regard, block cipher has been one of the most reliable options through which data security is accomplished. The strength of block encryption algorithms against different attacks is dependent on its nonlinear primitive which is… More >

Displaying 1-10 on page 1 of 17. Per Page