Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (29)
  • Open Access

    ARTICLE

    Towards Decentralized IoT Security: Optimized Detection of Zero-Day Multi-Class Cyber-Attacks Using Deep Federated Learning

    Misbah Anwer1,*, Ghufran Ahmed1, Maha Abdelhaq2, Raed Alsaqour3, Shahid Hussain4, Adnan Akhunzada5,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-15, 2026, DOI:10.32604/cmc.2025.068673 - 10 November 2025

    Abstract The exponential growth of the Internet of Things (IoT) has introduced significant security challenges, with zero-day attacks emerging as one of the most critical and challenging threats. Traditional Machine Learning (ML) and Deep Learning (DL) techniques have demonstrated promising early detection capabilities. However, their effectiveness is limited when handling the vast volumes of IoT-generated data due to scalability constraints, high computational costs, and the costly time-intensive process of data labeling. To address these challenges, this study proposes a Federated Learning (FL) framework that leverages collaborative and hybrid supervised learning to enhance cyber threat detection in… More >

  • Open Access

    REVIEW

    Integrating AI, Blockchain, and Edge Computing for Zero-Trust IoT Security: A Comprehensive Review of Advanced Cybersecurity Framework

    Inam Ullah Khan1, Fida Muhammad Khan1,*, Zeeshan Ali Haider1, Fahad Alturise2,*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 4307-4344, 2025, DOI:10.32604/cmc.2025.070189 - 23 October 2025

    Abstract The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges due to the scale, complexity, and heterogeneity of interconnected devices. The current traditional centralized security models are deemed irrelevant in dealing with these threats, especially in decentralized applications where the IoT devices may at times operate on minimal resources. The emergence of new technologies, including Artificial Intelligence (AI), blockchain, edge computing, and Zero-Trust-Architecture (ZTA), is offering potential solutions as it helps with additional threat detection, data integrity, and system resilience in real-time. AI offers sophisticated anomaly detection and prediction analytics, and… More >

  • Open Access

    ARTICLE

    A Hybrid Machine Learning and Blockchain Framework for IoT DDoS Mitigation

    Singamaneni Krishnapriya1,2,*, Sukhvinder Singh1

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 1849-1881, 2025, DOI:10.32604/cmes.2025.068326 - 31 August 2025

    Abstract The explosive expansion of the Internet of Things (IoT) systems has increased the imperative to have strong and robust solutions to cyber Security, especially to curtail Distributed Denial of Service (DDoS) attacks, which can cripple critical infrastructure. The proposed framework presented in the current paper is a new hybrid scheme that induces deep learning-based traffic classification and blockchain-enabled mitigation to make intelligent, decentralized, and real-time DDoS countermeasures in an IoT network. The proposed model fuses the extracted deep features with statistical features and trains them by using traditional machine-learning algorithms, which makes them more accurate… More > Graphic Abstract

    A Hybrid Machine Learning and Blockchain Framework for IoT DDoS Mitigation

  • Open Access

    REVIEW

    A Comprehensive Survey of Contemporary Anomaly Detection Methods for Securing Smart IoT Systems

    Chaimae Hazman1,2, Azidine Guezzaz2, Said Benkirane2, Mourade Azrour3,*, Vinayakumar Ravi4, Abdulatif Alabdulatif 5

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 301-329, 2025, DOI:10.32604/cmc.2025.064777 - 29 August 2025

    Abstract Attacks are growing more complex and dangerous as network capabilities improve at a rapid pace. Network intrusion detection is usually regarded as an efficient means of dealing with security attacks. Many ways have been presented, utilizing various strategies and focusing on different types of visitors. Anomaly-based network intrusion monitoring is an essential area of intrusion detection investigation and development. Despite extensive research on anomaly-based network detection, there is still a lack of comprehensive literature reviews covering current methodologies and datasets. Despite the substantial research into anomaly-based network intrusion detection algorithms, there is a dearth of More >

  • Open Access

    REVIEW

    Comprehensive Analysis of IoT Security: Threats, Detection Methods, and Defense Strategies

    Akhila Reddy Yadulla, Mounica Yenugula, Vinay Kumar Kasula*, Bhargavi Konda, Bala Yashwanth Reddy Thumma

    Journal on Internet of Things, Vol.7, pp. 19-48, 2025, DOI:10.32604/jiot.2025.062733 - 11 July 2025

    Abstract This study systematically reviews the Internet of Things (IoT) security research based on literature from prominent international cybersecurity conferences over the past five years, including ACM Conference on Computer and Communications Security (ACM CCS), USENIX Security, Network and Distributed System Security Symposium (NDSS), and IEEE Symposium on Security and Privacy (IEEE S&P), along with other high-impact studies. It organizes and analyzes IoT security advancements through the lenses of threats, detection methods, and defense strategies. The foundational architecture of IoT systems is first outlined, followed by categorizing major threats into eight distinct types and analyzing their More >

  • Open Access

    ARTICLE

    Port-Based Pre-Authentication Message Transmission Scheme

    Sunghyun Yu, Yoojae Won*

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.3, pp. 3943-3980, 2025, DOI:10.32604/cmes.2025.064997 - 30 June 2025

    Abstract Pre-Authentication and Post-Connection (PAPC) plays a crucial role in realizing the Zero Trust security model by ensuring that access to network resources is granted only after successful authentication. While earlier approaches such as Port Knocking (PK) and Single Packet Authorization (SPA) introduced pre-authentication concepts, they suffer from limitations including plaintext communication, protocol dependency, reliance on dedicated clients, and inefficiency under modern network conditions. These constraints hinder their applicability in emerging distributed and resource-constrained environments such as AIoT and browser-based systems. To address these challenges, this study proposes a novel port-sequence-based PAPC scheme structured as a… More >

  • Open Access

    ARTICLE

    Federated Learning and Blockchain Framework for Scalable and Secure IoT Access Control

    Ammar Odeh*, Anas Abu Taleb

    CMC-Computers, Materials & Continua, Vol.84, No.1, pp. 447-461, 2025, DOI:10.32604/cmc.2025.065426 - 09 June 2025

    Abstract The increasing deployment of Internet of Things (IoT) devices has introduced significant security challenges, including identity spoofing, unauthorized access, and data integrity breaches. Traditional security mechanisms rely on centralized frameworks that suffer from single points of failure, scalability issues, and inefficiencies in real-time security enforcement. To address these limitations, this study proposes the Blockchain-Enhanced Trust and Access Control for IoT Security (BETAC-IoT) model, which integrates blockchain technology, smart contracts, federated learning, and Merkle tree-based integrity verification to enhance IoT security. The proposed model eliminates reliance on centralized authentication by employing decentralized identity management, ensuring tamper-proof… More >

  • Open Access

    ARTICLE

    Privacy-Aware Federated Learning Framework for IoT Security Using Chameleon Swarm Optimization and Self-Attentive Variational Autoencoder

    Saad Alahmari1,*, Abdulwhab Alkharashi2

    CMES-Computer Modeling in Engineering & Sciences, Vol.143, No.1, pp. 849-873, 2025, DOI:10.32604/cmes.2025.062549 - 11 April 2025

    Abstract The Internet of Things (IoT) is emerging as an innovative phenomenon concerned with the development of numerous vital applications. With the development of IoT devices, huge amounts of information, including users’ private data, are generated. IoT systems face major security and data privacy challenges owing to their integral features such as scalability, resource constraints, and heterogeneity. These challenges are intensified by the fact that IoT technology frequently gathers and conveys complex data, creating an attractive opportunity for cyberattacks. To address these challenges, artificial intelligence (AI) techniques, such as machine learning (ML) and deep learning (DL),… More >

  • Open Access

    ARTICLE

    GENOME: Genetic Encoding for Novel Optimization of Malware Detection and Classification in Edge Computing

    Sang-Hoon Choi1, Ki-Woong Park2,*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4021-4039, 2025, DOI:10.32604/cmc.2025.061267 - 06 March 2025

    Abstract The proliferation of Internet of Things (IoT) devices has established edge computing as a critical paradigm for real-time data analysis and low-latency processing. Nevertheless, the distributed nature of edge computing presents substantial security challenges, rendering it a prominent target for sophisticated malware attacks. Existing signature-based and behavior-based detection methods are ineffective against the swiftly evolving nature of malware threats and are constrained by the availability of resources. This paper suggests the Genetic Encoding for Novel Optimization of Malware Evaluation (GENOME) framework, a novel solution that is intended to improve the performance of malware detection and… More >

  • Open Access

    ARTICLE

    Innovative Lightweight Encryption Schemes Leveraging Chaotic Systems for Secure Data Transmission

    Haider H. Al-Mahmood1,*, Saad N. Alsaad2

    Intelligent Automation & Soft Computing, Vol.40, pp. 53-74, 2025, DOI:10.32604/iasc.2024.059691 - 10 January 2025

    Abstract In secure communications, lightweight encryption has become crucial, particularly for resource-constrained applications such as embedded devices, wireless sensor networks, and the Internet of Things (IoT). As these systems proliferate, cryptographic approaches that provide robust security while minimizing computing overhead, energy consumption, and memory usage are becoming increasingly essential. This study examines lightweight encryption techniques utilizing chaotic maps to ensure secure data transmission. Two algorithms are proposed, both employing the Logistic map; the first approach utilizes two logistic chaotic maps, while the second algorithm employs a single logistic chaotic map. Algorithm 1, including a two-stage mechanism… More >

Displaying 1-10 on page 1 of 29. Per Page