Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (41)
  • Open Access

    ARTICLE

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

    Zhaohui Xia1,3, Baichuan Gao3, Chen Yu2,*, Haotian Han3, Haobo Zhang3, Shuting Wang3

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.2, pp. 1103-1137, 2024, DOI:10.32604/cmes.2023.029177

    Abstract This paper aims to solve large-scale and complex isogeometric topology optimization problems that consume significant computational resources. A novel isogeometric topology optimization method with a hybrid parallel strategy of CPU/GPU is proposed, while the hybrid parallel strategies for stiffness matrix assembly, equation solving, sensitivity analysis, and design variable update are discussed in detail. To ensure the high efficiency of CPU/GPU computing, a workload balancing strategy is presented for optimally distributing the workload between CPU and GPU. To illustrate the advantages of the proposed method, three benchmark examples are tested to verify the hybrid parallel strategy in this paper. The results… More > Graphic Abstract

    A Hybrid Parallel Strategy for Isogeometric Topology Optimization via CPU/GPU Heterogeneous Computing

  • Open Access

    PROCEEDINGS

    Efficient Multigrid Method Based on Adaptive Weighted Jacobi in Isogeometric Analysis

    ShiJie Luo1, Feng Yang1, Yingjun Wang1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09474

    Abstract The isogeometric analysis Method (IGA) is an efficient and accurate engineering analysis method. However, in order to obtain accurate analysis results, the grid must be refined, and the increase of the number of refinements will lead to large-scale equations, which will increase the computational cost. Compared with the traditional equation solvers such as preconditioned conjugate gradient method (PCG), generalized minimal residual (GMRES), the advantage of multigrid method is that the convergence rate is independent of grid scale when solving large-scale equations. This paper presents an adaptive weighted Jacobi method to improve the convergence of geometric multigrid method to efficiently solve… More >

  • Open Access

    PROCEEDINGS

    Robust Shape Optimization of Sound Barriers Based on Isogeometric Boundary Element Method and Polynomial Chaos Expansion

    Xuhang Lin1, Haibo Chen1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.09388

    Abstract As an important and useful tool for reducing noise, the sound barrier is of practical significance. The sound barrier has different noise reduction effects for different sizes, shapes and properties of the sound absorbing material. Liu et al. [1] have performed shape optimization of sound barriers by using isogeometric boundary element method and method of moving asymptotes (MMA). However, in engineering practice, it is difficult to determine some parameters accurately such as material properties, geometries, external loads. Therefore, it is necessary to consider these uncertainty conditions in order to ensure the rationality of the numerical calculation of engineering problems. In… More >

  • Open Access

    ARTICLE

    Parameterization Transfer for a Planar Computational Domain in Isogeometric Analysis

    Jinlan Xu*, Shuxin Xiao, Gang Xu, Renshu Gu

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1957-1973, 2023, DOI:10.32604/cmes.2023.028665

    Abstract In this paper, we propose a parameterization transfer algorithm for planar domains bounded by B-spline curves, where the shapes of the planar domains are similar. The domain geometries are considered to be similar if their simplified skeletons have the same structures. One domain we call source domain, and it is parameterized using multi-patch B-spline surfaces. The resulting parameterization is C1 continuous in the regular region and G1 continuous around singular points regardless of whether the parameterization of the source domain is C1/G1 continuous or not. In this algorithm, boundary control points of the source domain are extracted from its parameterization… More >

  • Open Access

    ARTICLE

    New Perspective to Isogeometric Analysis: Solving Isogeometric Analysis Problem by Fitting Load Function

    Jingwen Ren1, Hongwei Lin1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.3, pp. 2957-2984, 2023, DOI:10.32604/cmes.2023.025983

    Abstract Isogeometric analysis (IGA) is introduced to establish the direct link between computer-aided design and analysis. It is commonly implemented by Galerkin formulations (isogeometric Galerkin, IGA-G) through the use of nonuniform rational B-splines (NURBS) basis functions for geometric design and analysis. Another promising approach, isogeometric collocation (IGA-C), working directly with the strong form of the partial differential equation (PDE) over the physical domain defined by NURBS geometry, calculates the derivatives of the numerical solution at the chosen collocation points. In a typical IGA, the knot vector of the NURBS numerical solution is only determined by the physical domain. A new perspective… More > Graphic Abstract

    New Perspective to Isogeometric Analysis: Solving Isogeometric Analysis Problem by Fitting Load Function

  • Open Access

    ARTICLE

    Isogeometric Analysis of Longitudinal Displacement of a Simplified Tunnel Model Based on Elastic Foundation Beam

    Zhihui Xiong*, Lei Kou, Jinjie Zhao, Hao Cui, Bo Wang

    CMES-Computer Modeling in Engineering & Sciences, Vol.136, No.1, pp. 803-824, 2023, DOI:10.32604/cmes.2023.024833

    Abstract Serious uneven settlement of the tunnel may directly cause safety problems. At this stage, the deformation of the tunnel is predicted and analyzed mainly by numerical simulation, while the commonly used finite element method (FEM) uses low-order continuous elements. Therefore, the accuracy of tunnel settlement prediction is not enough. In this paper, a method is proposed to study the vertical deformation of the tunnel by using the combination of isogeometric analysis (IGA) and Bézier extraction operator. Compared with the traditional IGA method, this method can be easily integrated into the existing FEM framework, and ensure the same accuracy. A numerical… More >

  • Open Access

    ARTICLE

    An Isogeometric Cloth Simulation Based on Fast Projection Method

    Xuan Peng1,*, Chao Zheng2,3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.3, pp. 1837-1853, 2023, DOI:10.32604/cmes.2022.022367

    Abstract A novel continuum-based fast projection scheme is proposed for cloth simulation. Cloth geometry is described by NURBS, and the dynamic response is modeled by a displacement-only Kirchhoff-Love shell element formulated directly on NURBS geometry. The fast projection method, which solves strain limiting as a constrained Lagrange problem, is extended to the continuum version. Numerical examples are studied to demonstrate the performance of the current scheme. The proposed approach can be applied to grids of arbitrary topology and can eliminate unrealistic over-stretching efficiently if compared to spring-based methodologies. More >

  • Open Access

    ARTICLE

    Topology Optimization of Sound-Absorbing Materials for Two-Dimensional Acoustic Problems Using Isogeometric Boundary Element Method

    Jintao Liu1, Juan Zhao1, Xiaowei Shen1,2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.2, pp. 981-1003, 2023, DOI:10.32604/cmes.2022.021641

    Abstract In this work, an acoustic topology optimization method for structural surface design covered by porous materials is proposed. The analysis of acoustic problems is performed using the isogeometric boundary element method. Taking the element density of porous materials as the design variable, the volume of porous materials as the constraint, and the minimum sound pressure or maximum scattered sound power as the design goal, the topology optimization is carried out by solid isotropic material with penalization (SIMP) method. To get a limpid 0–1 distribution, a smoothing Heaviside-like function is proposed. To obtain the gradient value of the objective function, a… More >

  • Open Access

    ARTICLE

    Multi-Patch Black-White Topology Optimization in Isogeometric Analysis

    Qingyuan Hu1,*, Yuan Liang2, Menghao Liu1, Manfeng Hu1, Yawen Mao1

    CMES-Computer Modeling in Engineering & Sciences, Vol.134, No.1, pp. 459-481, 2023, DOI:10.32604/cmes.2022.020327

    Abstract Topological optimization plays a guiding role in the conceptual design process. This paper conducts research on structural topology optimization algorithm within the framework of isogeometric analysis. For multi-component structures, the Nitsche’s method is used to glue different meshes to perform isogeometric multi-patch analysis. The discrete variable topology optimization algorithm based on integer programming is adopted in order to obtain clear boundaries for topology optimization. The sensitivity filtering method based on the Helmholtz equation is employed for averaging of curved elements' sensitivities. In addition, a simple averaging method along coupling interfaces is proposed in order to ensure the material distribution across… More >

  • Open Access

    ARTICLE

    A Parallel Computing Schema Based on IGA

    Jinggang Deng1,2, Bingquan Zuo1,2,*, Huixin Luo1,2, Weikang Xie1,2, Jiashu Yang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.132, No.3, pp. 965-990, 2022, DOI:10.32604/cmes.2022.020631

    Abstract In this paper, a new computation scheme based on parallelization is proposed for Isogeometric analysis. The parallel computing is introduced to the whole progress of Isogeometric analysis. Firstly, with the help of the “tensorproduct” and “iso-parametric” feature, all the Gaussian integral points in particular element can be mapped to a global matrix using a transformation matrix that varies from element. Then the derivatives of Gauss integral points are computed in parallel, the results of which can be stored in a global matrix. And a middle layer is constructed to assemble the final stiffness matrices in parallel. The numerical example results… More >

Displaying 1-10 on page 1 of 41. Per Page