Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (9)
  • Open Access

    ARTICLE

    Numerical Comparison of Stagnation Point Casson Fluid Stream over Flat and Cylindrical Surfaces with Joule Heating and Chemical Reaction Impacts

    Shaik Jaffrullah1, Sridhar Wuriti1,*, Raghavendra Ganesh Ganugapati2, Srinivasa Rao Talagadadevi1

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 407-426, 2023, DOI:10.32604/fhmt.2023.043305

    Abstract In this particular study, we have considered the flow of Casson fluid over inclined flat and cylindrical surfaces, and have conducted a numerical analysis taking into account various physical factors such as mixed convection, stagnation point flow, MHD, thermal radiation, viscous dissipation, heat generation, Joule heating effect, variable thermal conductivity and chemical reaction. Flow over flat plate phenomena is observed aerospace industry, and airflow over solar panels, etc. Cylindrical surfaces are commonly used in several applications interacting with fluids, such as bridges, cables, and buildings, so the study of fluid flow over cylindrical surfaces is more important. Due to the… More >

  • Open Access

    ARTICLE

    COMBINED EFFECTS OF HALL, JOULE HEATING AND THERMAL DIFFUSION ON MIXED CONVECTION FLOW IN A VERTICAL CHANNEL SATURATED WITH COUPLE STRESS FLUID

    K. Kaladhara,∗, D. Srinivasacharyab

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.6

    Abstract This present investigation carried out the effects of Hall current, Joule heating and the thermal diffusion on mixed convection flow of electrically conducting couple stress fluid in a vertical channel saturated with porous medium. The final system of ordinary differential equations are obtained from the governing non-linear partial differential equations by using the similarity transformations. Homotopy Analysis Method has been used to solve the non-linear system. The average residue errors of the HAM solutions are presented through graphs. The influence of the emerging parameters (Hall, Soret, magnetic and the couple stress parameters) on velocity, temperature and concentration profiles are presented… More >

  • Open Access

    ARTICLE

    Computational Analysis of Heat and Mass Transfer in Magnetized Darcy-Forchheimer Hybrid Nanofluid Flow with Porous Medium and Slip Effects

    Nosheen Fatima1, Nabeela Kousar1, Khalil Ur Rehman2,3,*, Wasfi Shatanawi2,4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.3, pp. 2311-2330, 2023, DOI:10.32604/cmes.2023.026994

    Abstract A computational analysis of magnetized hybrid Darcy-Forchheimer nanofluid flow across a flat surface is presented in this work. For the study of heat and mass transfer aspects viscous dissipation, activation energy, Joule heating, thermal radiation, and heat generation effects are considered. The suspension of nanoparticles singlewalled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) are created by hybrid nanofluids. However, single-walled carbon nanotubes (SWCNTs) produce nanofluids, with water acting as conventional fluid, respectively. Nonlinear partial differential equations (PDEs) that describe the ultimate flow are converted to nonlinear ordinary differential equations (ODEs) using appropriate similarity transformation. The ODEs are dealt with… More >

  • Open Access

    ARTICLE

    JOULE HEATING AND THERMAL DIFFUSION EFFECTS ON MHD RADIATIVE AND CONVECTIVE CASSON FLUID FLOW PAST AN OSCILLATING SEMI-INFINITE VERTICAL POROUS PLATE

    C. Veeresha , S. V. K. Varmaa , A .G. Vijaya Kumarb,*, M. Umamaheswarc, M. C. Rajuc

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-8, 2017, DOI:10.5098/hmt.8.1

    Abstract An analysis is performed to investigate the effects of Joule heating and thermal diffusion on unsteady, viscous, incompressible, electrically conducting MHD heat and mass transfer free convection Casson fluid flow past an oscillating semi-infinite vertical moving porous plate in the presence of heat source/sink and an applied transverse magnetic field. Initially it is assumed that the plate and surrounding fluid at the same temperature and concentration at all the points in stationary condition in the entire flow region. Thereafter a constant temperature is given to the plate hence the buoyancy effect is supporting the fluid to move in upward direction… More >

  • Open Access

    ARTICLE

    COMBINED INFLUENCE OF HALL CURRENTS AND JOULE HEATING ON HEMODYNAMIC PERISTALTIC FLOW WITH POROUS MEDIUM THROUGH A VERTICAL TAPERED ASYMMETRIC CHANNEL WITH RADIATION

    S. Ravi Kumar* , S. K. Abzal

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-9, 2017, DOI:10.5098/hmt.9.19

    Abstract The aim of the present attempt is hall currents and joule heating on peristaltic blood flow in porous medium through a vertical tapered asymmetric channel under the influence of radiation. The Mathematical modeling is investigated by utilizing long wavelength and low Reynolds number assumptions. The indicates an appreciable increase in the axial velocity distribution with increase in hall current parameter and porosity parameter whereas the result in axial velocity distribution diminished by increase in magnetic field parameter. The result in pressure gradient reduces by rise in hall current parameter, porosity parameter and volumetric flow rate. The temperature of the fluid… More >

  • Open Access

    ARTICLE

    SORET AND DUFOUR EFFECTS ON MHD FLOW OF A MAXWELL FLUID OVER A STRETCHING SHEET WITH JOULE HEATING

    B. Venkateswarlua, P.V. Satya Narayanab,*

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.11

    Abstract An analysis has been carried out to study the mixed convection flow, heat and mass transfer of an incompressible electrically conducting Maxwell fluid past a vertical stretching sheet in the presence of chemical reaction with thermal diffusion (Soret) and diffusion-thermo (Dufour) effects. The governing nonlinear partial differential equations along with the appropriate boundary conditions are non-dimensionalized using suitable similarity variables. The resulting transformed ordinary differential equations are then solved numerically by shooting technique with fourth order Runge - Kutta method. The influence of various physical parameters on the flow, heat and mass transfer characteristics are discussed through graphs and tables.… More >

  • Open Access

    ARTICLE

    2D FLOW OF CASSON FLUID WITH NON-UNIFORM HEAT SOURCE/SINK AND JOULE HEATING

    Emran Khoshrouye Ghiasi, Reza Saleh*

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-7, 2019, DOI:10.5098/hmt.12.4

    Abstract In this paper, two-dimensional magnetohydrodynamic (MHD) flow of Casson fluid over a fixed plate under non-uniform heat source/sink and Joule heating is analyzed by the homotopy analysis method (HAM). The governing boundary-layer equations have been reduced to the ordinary differential equations (ODEs) through the similarity variables. The current HAM-series solution is compared and successfully validated by the previous studies. Furthermore, the effects of thermo-physical parameters on the current solution are precisely examined. It is found that the skin friction coefficient and local Nusselt number are greatly affected by the Hartmann number. It can be concluded that employing the Casson fluid… More >

  • Open Access

    ARTICLE

    Analysis of Heat Transport in a Powell-Eyring Fluid with Radiation and Joule Heating Effects via a Similarity Transformation

    Tahir Naseem1,2,*, Iqra Bibi1, Azeem Shahzad2, Mohammad Munir3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 663-677, 2023, DOI:10.32604/fdmp.2022.021136

    Abstract Heat transfer in an Eyring-Powell fluid that conducts electricity and flows past an exponentially growing sheet is considered. As the sheet is stretched in the x direction, the flow develops in the region with y > 0. The problem is tackled through a set of partial differential equations accounting for Magnetohydrodynamics (MHD), radiation and Joule heating effects, which are converted into a set of equivalent ordinary differential equations through a similarity transformation. The converted problem is solved in MATLAB in the framework a fourth order accurate integration scheme. It is found that the thermal relaxation period is inversely proportional to… More >

  • Open Access

    ARTICLE

    Heat Absorption and Joule Heating Effects on Transient Free Convective Reactive Micropolar Fluid Flow Past a Vertical Porous Plate

    MD. Shamshuddin1, *, C. Balarama Krishna2

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.3, pp. 207-231, 2019, DOI:10.32604/fdmp.2019.00449

    Abstract Mathematical model for an unsteady, incompressible, electrically conducting micropolar fluid past a vertical plate through porous medium with constant plate velocity has been investigated in the present study. Heat absorption, Joulian dissipation, and firstorder chemical reaction is also considered. Under the assumption of low Reynolds number, the governing transport equations are rendered into non-dimensional form and the transformed first order differential equations are solved by employing an efficient finite element method. Influence of various flow parameters on linear velocity, microrotation velocity, temperature, and concentration are presented graphically. The effects of heat absorption and chemical reaction rate decelerate the flow is… More >

Displaying 1-10 on page 1 of 9. Per Page