Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    REVIEW

    A Review of Basic Mechanical Behavior of Laminated Bamboo Lumber

    Assima Dauletbek1, Haitao Li1,2,*, Rodolfo Lorenzo3, Ileana Corbi4, Ottavia Corbi4, Mahmud Ashraf5

    Journal of Renewable Materials, Vol.10, No.2, pp. 273-300, 2022, DOI:10.32604/jrm.2022.017805

    Abstract Over the past decade, the physical and mechanical performances of laminated bamboo lumber (LBL)–a bamboo-based structural material, have been extensively studied using experimental, analytical, and numerical approaches. This paper presents a review of existing knowledge in the literature about the mechanical properties of LBL. The paper involved the review of the response of LBL to different types of loading such as tension, bending, compression, and shear. Based on results of the literature reviewed, the strength of LBL parallel to grain was 90–124 MPa with MOE of 10700 MPa in tension, 29.55–72.60 MPa, and MOE of 8396–11022 MPa in compression, 63.87–128.4 MPa, and MOE of 8320–10912 MPa… More >

  • Open Access

    ARTICLE

    Slenderness Ratio Effect on the Eccentric Compression Performance of Chamfered Laminated Bamboo Lumber Columns

    Ke Zhou1,2, Haitao Li1,2,*, Assima Dauletbek1,2, Dong Yang1,2, Zhenhua Xiong3, Rodolfo Lorenzo4, Kun Zhou5, Ileana Corbi6, Ottavia Corbi6

    Journal of Renewable Materials, Vol.10, No.1, pp. 165-182, 2022, DOI:10.32604/jrm.2021.017223

    Abstract Eccentric compression tests on 15 chamfered laminated bamboo lumber (LBL) columns with a height ranging from 600 to 3000 mm were conducted in order to study the eccentric mechanical performance. The failure of all specimens was caused by the crack of bamboo fiber in the tensile region. When the ultimate strength was reached, except specimens with a height of 600 mm, all other specimens could bear large deformation, showing good ductility. The lateral displacements of the specimens under eccentric compression were approximately parabolic in the direction of column height. The ultimate bending moment of LBL columns with different slenderness ratios… More >

  • Open Access

    ARTICLE

    Nodes Effect on the Bending Performance of Laminated Bamboo Lumber Unit

    Yiwei Xuan1,3, Haitao Li1,*, Zhemin Bei1, Zhenhua Xiong2, Rodolfo Lorenzo4, Ileana Corbi5, Ottavia Corbi5

    Journal of Renewable Materials, Vol.9, No.6, pp. 1143-1156, 2021, DOI:10.32604/jrm.2021.015292

    Abstract This research studied the ultimate bearing capacity of laminated bamboo lumber (LBL) unit and thereby calculated the maximum bending moment. The load-displacement chart for all specimens was obtained. Then the flexural capacity of members with and without bamboo nodes in the middle section was coMPared. The bending experiment phenomenon of LBL unit was concluded. Different failure modes of bending components were analysed and concluded. Finally, the bending behaviour of LBL units is coMPared with other bamboo and timber products. It is shown that the average ultimate load of BS members is 866.1 N, the average flexural strength is 101 MPa,… More >

Displaying 1-10 on page 1 of 3. Per Page