Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (85)
  • Open Access

    ARTICLE

    A Wavelet Method for Solving Bagley-Torvik Equation

    Xiaomin Wang1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.102, No.2, pp. 169-182, 2014, DOI:10.3970/cmes.2014.102.169

    Abstract In this paper, an efficient and robust wavelet Laplace inversion method of solving the fractional differential equations is proposed. Such an inverse function can be applied to any reasonable function categories and it is not necessary to know the properties of original function in advance. As an example, we have applied the proposed method to the solution of the Bagley–Torvik equations and Numerical examples are given to demonstrate the efficiency and accuracy of the proposed. More >

  • Open Access

    ARTICLE

    On the Numerical Solution of the Laplace Equation with Complete and Incomplete Cauchy Data Using Integral Equations

    Christina Babenko1, Roman Chapko2, B. Tomas Johansson3

    CMES-Computer Modeling in Engineering & Sciences, Vol.101, No.5, pp. 299-317, 2014, DOI:10.3970/cmes.2014.101.299

    Abstract We consider the numerical solution of the Laplace equations in planar bounded domains with corners for two types of boundary conditions. The first one is the mixed boundary value problem (Dirichlet-Neumann), which is reduced, via a single-layer potential ansatz, to a system of well-posed boundary integral equations. The second one is the Cauchy problem having Dirichlet and Neumann data given on a part of the boundary of the solution domain. This problem is similarly transformed into a system of ill-posed boundary integral equations. For both systems, to numerically solve them, a mesh grading transformation is More >

  • Open Access

    ARTICLE

    Boundary Layer Effect in Regularized Meshless Method for Laplace Equation

    Weiwei Li1, Wen Chen1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.100, No.5, pp. 347-362, 2014, DOI:10.3970/cmes.2014.100.347

    Abstract This paper presents an efficient strategy for the accurate evaluation of near-boundary solutions in the regularized meshless method (RMM), also known as the boundary layer effect associated with the boundary element method. The RMM uses the double layer potentials as its interpolation basis function. When the field point is close to the boundary, the basis function will present nearly strongand hyper-singularities, respectively, for potentials and its derivative. This paper represents the first attempt to apply a nonlinear transformation, based on sinh function, to the accurate evaluation of nearly singular kernels associated with the RMM. The More >

  • Open Access

    ARTICLE

    The Cell Method: Quadratic Interpolation with Tetrahedra for 3D Scalar Fields

    Martino Pani1, Fulvia Taddei1

    CMES-Computer Modeling in Engineering & Sciences, Vol.94, No.4, pp. 279-300, 2013, DOI:10.3970/cmes.2013.094.279

    Abstract The Cell Method (CM) is a numerical method to solve field equations starting from its direct algebraic formulation. For two-dimensional problems it has been demonstrated that using simplicial elements with an affine interpolation, the CM obtains the same fundamental equation of the Finite Element Method (FEM); using the quadratic interpolation functions, the fundamental equation differs depending on how the dual cell is defined. In spite of that, the CM can still provide the same convergence rate obtainable with the FEM. Particularly, adopting a uniform triangulation and basing the dual cells on the Gauss points of More >

  • Open Access

    ARTICLE

    Cauchy Problem for the Laplace Equation in 2D and 3D Doubly Connected Domains

    Ji-Chuan Liu1, Quan-Guo Zhang2

    CMES-Computer Modeling in Engineering & Sciences, Vol.93, No.3, pp. 203-220, 2013, DOI:10.3970/cmes.2013.093.203

    Abstract In this paper, we propose an algorithm to solve a Cauchy problem of the Laplace equation in doubly connected domains for 2D and 3D cases in which the Cauchy data are given on the outer boundary. We want to seek a solution in the form of the single-layer potential and discrete it by parametrization to yield an ill-conditioned system of algebraic equations. Then we apply the Tikhonov regularization method to solve this ill-posed problem and obtain a stable numerical solution. Based on the regularization parameter chosen suitably by GCV criterion, the proposed method can get More >

  • Open Access

    ARTICLE

    A Fully Coupled Model of Non-linearWave in a Harbor

    Daguo Wang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.91, No.4, pp. 289-312, 2013, DOI:10.3970/cmes.2013.091.289

    Abstract A 2-D time-domain numerical coupled model for non-linear wave forces acting on a fixed ship is developed in the present study. The whole domain is divided into the inner domain and the outer domain. The inner domain is the area around the ship section and the flow is described by the Laplace equation. The remaining area is the outer domain and the flow is defined by the higher-order Boussinesq equations in order to consider the nonlinearity of the wave motions. The matching conditions on the interfaces between the inner domain and the outer domain are… More >

  • Open Access

    ARTICLE

    Transient Wave Propagation in a Functionally Graded Slab and Multilayered Medium Subjected to Dynamic Loadings

    Chien-Ching Ma1,2, Yi-Hsien Lin2, Shih-Hao Lin2

    CMC-Computers, Materials & Continua, Vol.31, No.1, pp. 37-64, 2012, DOI:10.3970/cmc.2012.031.037

    Abstract In this article, the transient response in a functionally graded material (FGM) slab is analyzed by Laplace transform technique. The numerical Laplace inversion (Durbin's formula) is used to calculate the dynamic behavior of the FGM slab. The slab is subjected an uniform loading at the upper surface, and the lower surface are assumed to be traction-free or fixed conditions. The analytical solutions are presented in the transform domain and the numerical Laplace inversion is performed to obtain the transient response in time domain. To take the accuracy and computational efficiency in consideration, Durbin's method is More >

  • Open Access

    ARTICLE

    A Multiple-Precision Study on the Modified Collocation Trefftz Method

    Chia-Cheng Tsai1, Po-Ho Lin2

    CMC-Computers, Materials & Continua, Vol.28, No.3, pp. 231-260, 2012, DOI:10.3970/cmc.2012.028.231

    Abstract Recently, Liu (CMES 21(2007), 53) developed the modified collocation Trefftz method (MCTM) by setting a characteristic length slightly larger than the maximum radius of the computational domain. In this study, we find that the range of admissible characteristic length can be significantly enlarged if the LU decomposition is applied for solving the resulted dense unsymmetric matrix. Furthermore, we discover a range formula for admissible characteristic length, in which the number of the T-complete functions, the shape of the computation domain, and the exponent bits of the involved floating-point arithmetic have been taken into consideration. In… More >

  • Open Access

    ARTICLE

    A Direct Integral Equation Method for a Cauchy Problem for the Laplace Equation in 3-Dimensional Semi-Infinite Domains

    Roman Chapko1, B. Tomas Johansson2

    CMES-Computer Modeling in Engineering & Sciences, Vol.85, No.2, pp. 105-128, 2012, DOI:10.3970/cmes.2012.085.105

    Abstract We consider a Cauchy problem for the Laplace equation in a 3-dimen -sional semi-infinite domain that contains a bounded inclusion. The canonical situation is the upper half-space in I\tmspace -.1667em R3 containing a bounded smooth domain. The function value of the solution is specified throughout the plane bounding the upper half-space, and the normal derivative is given only on a finite portion of this plane. The aim is to reconstruct the solution on the surface of the bounded inclusion. This is a generalisation of the situation in Chapko and Johansson (2008) to three-dimensions and with… More >

  • Open Access

    ARTICLE

    A Wavelet Numerical Method for Solving Nonlinear Fractional Vibration, Diffusion and Wave Equations

    Zhou YH1,2, Wang XM2, Wang JZ1,2 , Liu XJ2

    CMES-Computer Modeling in Engineering & Sciences, Vol.77, No.2, pp. 137-160, 2011, DOI:10.3970/cmes.2011.077.137

    Abstract In this paper, we present an efficient wavelet-based algorithm for solving a class of fractional vibration, diffusion and wave equations with strong nonlinearities. For this purpose, we first suggest a wavelet approximation for a function defined on a bounded interval, in which expansion coefficients are just the function samplings at each nodal point. As the fractional differential equations containing strong nonlinear terms and singular integral kernels, we then use Laplace transform to convert them into the second type Voltera integral equations with non-singular kernels. Certain property of the integral kernel and the ability of explicit More >

Displaying 31-40 on page 4 of 85. Per Page