Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (8)
  • Open Access

    ARTICLE

    MHD MIXED CONVECTION AND ENTROPY GENERATION IN A 3D LID-DRIVEN CAVITY

    Lioua Kolsia,b,*

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-10, 2016, DOI:10.5098/hmt.7.26

    Abstract In this study, the effects of Richardson and Hartmann numbers on heat and mass transfer in a three-dimensional lid-driven cubical cavity subjected to a uniform magnetic field are investigated numerically. The lid is maintained at constant high temperature and is moving downwards in the negative y-direction. The wall opposite to the lid is stationary and maintained at constant low temperature, and all other walls are kept adiabatic. Entropy generation is also calculated to investigate the nature of irreversibility in heat transfer inside the cavity. The computations are performed for the Richardson numbers 10 and 100, and Hartmann number in the… More >

  • Open Access

    ARTICLE

    MAGNETOCONVECTION AND IRREVERSIBILITY PHENOMENA WITHIN A LID DRIVEN CAVITY FILLED WITH LIQUID METAL UNDER MAGNETIC FIELD

    Fakher Oueslatia,b,†, Brahim Ben-Beyab

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.38

    Abstract The current study deals with a numerical investigation of magnetoconvection and entropy generation within a lid driven square cavity subject to uniform magnetic field and filled with liquid metal. Effects of multiple parameters namely; the Prandtl, Hartmann and Richardson numbers were predicted and analyzed using a numerical methodology based on the finite volume method and a full multigrid technique. The numerical outcome of the present study shows that, the enhancement of Hartmann number declines the heat transfer rate for all liquid metals considered. Moreover, it is observed that augmenting the Richardson number leads to acceleration of the flow with a… More >

  • Open Access

    ARTICLE

    Polygonal Finite Element for Two-Dimensional Lid-Driven Cavity Flow

    T. Vu-Huu1, C. Le-Thanh2, H. Nguyen-Xuan3,4, M. Abdel-Wahab3,5,*

    CMC-Computers, Materials & Continua, Vol.70, No.3, pp. 4217-4239, 2022, DOI:10.32604/cmc.2022.020889

    Abstract This paper investigates a polygonal finite element (PFE) to solve a two-dimensional (2D) incompressible steady fluid problem in a cavity square. It is a well-known standard benchmark (i.e., lid-driven cavity flow)-to evaluate the numerical methods in solving fluid problems controlled by the Navier–Stokes (N–S) equation system. The approximation solutions provided in this research are based on our developed equal-order mixed PFE, called Pe1Pe1. It is an exciting development based on constructing the mixed scheme method of two equal-order discretisation spaces for both fluid pressure and velocity fields of flows and our proposed stabilisation technique. In this research, to handle the… More >

  • Open Access

    ABSTRACT

    Non-Newtonian Lid-driven Cavity Flow Simulation by Mesh Free Method

    Abazar Shamekhi1, Abbas Aliabadi2

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.11, No.3, pp. 67-72, 2009, DOI:10.3970/icces.2009.011.067

    Abstract Non-Newtonian lid-driven cavity flow is studied in a wide range of Reynolds numbers. The algorithm of mesh free characteristic based split has been extended for solving non-Newtonian flow problems in meshfree context. It is assumed that the non-Newtonian fluid properties obey Carreau-Yasuda rheological model. The results obtained from mesh free characteristic based split algorithm have been compared to the results of other meshfree methods. Results have been obtained for the velocity profiles at Reynolds numbers as high as 1000 for a Carreau-Yasuda fluid. More >

  • Open Access

    ARTICLE

    DRBEM Solution of Incompressible MHD Flow with Magnetic Potential

    B. Pekmen1,2, M. Tezer-Sezgin2,3

    CMES-Computer Modeling in Engineering & Sciences, Vol.96, No.4, pp. 275-292, 2013, DOI:10.3970/cmes.2013.096.275

    Abstract The dual reciprocity boundary element method (DRBEM) formulation is presented for solving incompressible magnetohydrodynamic (MHD) flow equations. The combination of Navier-Stokes equations of fluid dynamics and Maxwell’s equations of electromagnetics through Ohm’s law is considered in terms of stream function, vorticity and magnetic potential in 2D. The velocity field and the induced magnetic field can be determined through the relations with stream function and magnetic potential, respectively. The numerical results are visualized for several values of Reynolds (Re), Hartmann (Ha) and magnetic Reynolds number (Rem) in a lid-driven cavity, and in a channel with a square cylinder. The well-known characteristics… More >

  • Open Access

    ARTICLE

    Performance of Multiquadric Collocation Method in Solving Lid-driven Cavity Flow Problem with Low Reynolds Number

    S. Chantasiriwan1

    CMES-Computer Modeling in Engineering & Sciences, Vol.15, No.3, pp. 137-146, 2006, DOI:10.3970/cmes.2006.015.137

    Abstract The multiquadric collocation method is the collocation method based on radial basis function known as multiquadrics. It has been successfully used to solve several linear and nonlinear problems. Although fluid flow problems are among problems previously solved by this method, there is still an outstanding issue regarding the influence of the free parameter of multiquadrics (or the shape parameter) on the performance of the method. This paper provides additional results of using the multiquadric collocation method to solve the lid-driven cavity flow problem. The method is used to solve the problem in the stream function-vorticity formulation and the velocity-vorticity formulation.… More >

  • Open Access

    ARTICLE

    Mixed Convection of Bingham Fluid in a Two Sided Lid-Driven Cavity Heated From Below

    Toufik Benmalek1, Ferhat Souidi1, Mourad Moderres2,*, Bilal Yassad1, Said Abboudi3

    FDMP-Fluid Dynamics & Materials Processing, Vol.15, No.2, pp. 107-123, 2019, DOI:10.32604/fdmp.2019.04496

    Abstract This study aims to analyze mixed convection in a square cavity with two moving vertical walls by finite volume method. The cavity filled with Non-Newtonian fluid of Bingham model is heated from below and cooled by the other walls. This study has been conducted for certain parameters of Reynolds number (Re=1-100), Richardson number (Ri=1-20), Prandtl number (Pr=1-500), and Bingham number has been studied from 0 to 10. The results indicate that the increase in yield stress drops the heat transfer and the flow become flatter, while increasing Reynolds number augments it. The convective transport is dominant when increasing Richardson number… More >

  • Open Access

    ARTICLE

    Mixed Convection of Nanofluids inside a Lid-Driven Cavity Heated by a Central Square Heat Source

    Fatima-zohra Bensouici1, *, Saadoun Boudebous2

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.3, pp. 189-212, 2017, DOI:10.3970/fdmp.2017.013.189

    Abstract A numerical work has been performed to analyze the laminar mixed convection of nanofluids confined in a lid driven square enclosure with a central square and isotherm heat source. All the walls are cooled at constant temperature, and the top wall slides rightward at constant velocity. The simulations considered four types of nanofluids (Cu, Ag, Al2O3 and TiO2)-Water. The governing equations were solved using finite volume approach by the SIMPLER algorithm. Comparisons with previously published work are performed and found to be in good agreement. The influence of pertinent parameters such as Richardson number, size of the heat source, solid… More >

Displaying 1-10 on page 1 of 8. Per Page