Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (184)
  • Open Access

    ARTICLE

    Parametric Study of Bubble Kinematic Behaviour in a Centrifugal Vacuum Separator

    Yuan Chen1, Honggang Duan1, Fei Yu1, Xingyu Zhao1, Han Xu1, Jun Gao1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.11, No.2, pp. 127-142, 2015, DOI:10.3970/fdmp.2015.011.127

    Abstract The dynamics of dispersed bubbles in a centrifugal separator are investigated with the aim to improve the efficiency of the system. The prototype separator consists of a rotor, a base, a diverting disc, a shaft, an oil trapping impeller, a central pipe, an inlet section for contaminated oil, an outlet section for purified oil and an air outlet. A hydrodynamic model is developed to predict the complex influence of parameters such as the centrifugal force and vacuum pressure. In particular, three different force models are selected to analyze the effect of the added mass and More >

  • Open Access

    ARTICLE

    MHD Effect on Relative Motion of Two Immiscible Liquid Spheres

    D.V. Jayalakshmamma1, Dinesh P.A.2, M. Sankar3, D.V. Ch,rashekhar4

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 343-357, 2014, DOI:10.3970/fdmp.2014.010.343

    Abstract We examine the motion of the two concentric immiscible liquid spheres with different viscosities in an electrically conducting fluid in the presence of transverse magnetic field. The inner sphere is assumed to move at a constant velocity. The Stoke’s equation along with the Lorentz force is considered to model the resulting fluid flow, analytical solutions being obtained by the similarity solution method in terms of modified Bessel’s functions. Streamlines related to the fluid circulation in the annulus between the two liquid spheres and inside the inner liquid sphere are presented for different combinations of the More >

  • Open Access

    ARTICLE

    Transient Electrohydrodynamics of a Liquid Jet: Evolution of The Flow Field

    A. Behjatian1, A. Esmaeeli1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.3, pp. 299-317, 2014, DOI:10.3970/fdmp.2014.010.299

    Abstract Computational studies are performed to explore the underlying physics behind the evolution of the flow field in an around a liquid jet that is immersed in another liquid and is exposed to a uniform electric field. Here the focus is on finite Reynolds and O(1) Ohnesorge number flows. This is achieved by solving the full Navier-Stokes and electric field equations using a front tracking/finite difference technique in the framework of Taylor's leaky dielectric theory. It is shown that the evolution of the flow field is determined by the relative magnitude of the ratio of the electric… More >

  • Open Access

    ARTICLE

    The JEREMI-Project on Thermocapillary Convection in Liquid Bridges. Part B: Overview on Impact of Co-axial Gas Flow.

    V. Shevtsova1, Y. Gaponenko1, H.C. Kuhlmann2, M. Lappa3, M. Lukasser2, S. Matsumoto4, A. Mialdun1, J.M. Montanero5, K. Nishino6, I. Ueno7

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.2, pp. 197-240, 2014, DOI:10.3970/fdmp.2014.010.197

    Abstract Pure surface-tension-driven flow is a unique type of flow that can be controlled through external manipulation of thermal and/or mechanical boundary conditions at the free liquid surface where the entire driving force for the convection is generated. This unique feature has been exploited in recent studies for the active control of the flow instability. The use of forced coaxial gas streams has been proposed as a way to stabilize the Marangoni convection in liquid bridges in the planned space experiment JEREMI (Japanese and European Research Experiment on Marangoni Instabilities). It is aimed at understanding the More >

  • Open Access

    ARTICLE

    Simulation of Thermal Fluid-structure Interaction Phenomena in a Liquid Sodium Porous System

    Yan Shen1, Hong Zhang1,2,3, Hui Xu1, Tong Bai1, Ping Yu1

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 63-81, 2014, DOI:10.3970/fdmp.2014.010.063

    Abstract Single-unit and multi-unit models of porous media (metal felts) have been used to investigate thermal fluid-structure interaction phenomena in a liquid sodium system. Micro-scale aspects have been studied via numerical simulations. The permeability of metal felts has been measured experimentally to verify the reliability of the models used. This integrated approach has allowed a proper evaluation of the interdependencies among phenomena on different scales (including relevant information on skeleton deformation and pressure drop as a function of different parameters). Pressure drop generally increases with velocity and heat flux for both laminar and turbulent flows. The More >

  • Open Access

    ARTICLE

    Liquid Spray Impact onto Flat and Rigid Walls: Formation and Spreading of Accumulated Wall Film

    Davood Kalantari1, Cameron Tropea2

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 37-61, 2014, DOI:10.3970/fdmp.2014.010.037

    Abstract This study presents a combined experimental and theoretical investigation on the formation and spreading of a liquid film on a flat and rigid wall due to spray impact. A dual-mode phase Doppler instrument is used to characterise the spray while the average film thickness is measured using a high-speed CCD camera. The experimental results are complemented with theoretical expressions derived under the assumption that the spray is stationary. A new model for the prediction of the average wall film thickness is formulated taking into account the mean Reynolds number of the impacting drops, the flux More >

  • Open Access

    ARTICLE

    The JEREMI-Project on Thermocapillary Convection in Liquid Bridges. Part A: Overview of Particle Accumulation Structures

    H. C. Kuhlmann1, M. Lappa2, D. Melnikov3, R. Mukin1,F. H. Muldoon1, D. Pushkin4, V. Shevtsova2, I. Ueno5

    FDMP-Fluid Dynamics & Materials Processing, Vol.10, No.1, pp. 1-10, 2014, DOI:10.3970/fdmp.2014.010.001

    Abstract The rapid accumulation of particles suspended in a thermocapillary liquid bridge is planned to be investigated during the JEREMI experiment on the International Space Station scheduled for 2016. An overview is given of the current status of experimental and numerical investigations of this phenomenon. More >

  • Open Access

    ARTICLE

    Binary Collisions of Immiscible Liquid Drops for Liquid Encapsulation

    Carole Planchette1, Elise Lorenceau1, Günter Brenn2

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.3, pp. 279-302, 2011, DOI:10.3970/fdmp.2011.007.279

    Abstract This work is dedicated to a general description of collisions between two drops of immiscible liquids. Our approach is mainly experimental and allows us to describe the outcomes of such collisions according to a set of relevant parameters. Varying the relative velocity U as well as the impact parameter X we can build for each pair of investigated liquids a nomogram X,U showing three possible regimes: coalescence, head-on separation and off-center separation. In this paper, we also study the influence of the liquid properties, i.e. viscosity, density, surface and interfacial tensions using a set of… More >

  • Open Access

    ARTICLE

    Onset of Hydrothermal Instability in Liquid Bridge. Experimental Benchmark

    V. Shevtsova1, A. Mialdun1, H. Kawamura2, I. Ueno2, K. Nishino3, M. Lappa4

    FDMP-Fluid Dynamics & Materials Processing, Vol.7, No.1, pp. 1-28, 2011, DOI:10.3970/fdmp.2011.007.001

    Abstract The experimental results from nine benchmark test cases conducted by five different groups are presented. The goal of this study is to build an experimental database for validation of numerical models in liquid bridge geometry. The need arises as comparison of numerical results with a single experiment can lead to a large discrepancy due to specific experimental conditions. Perfectly conducting rigid walls and, especially, idealized boundary conditions at the free surface employed in numerical studies are not always realized in experiments. The experimental benchmark has emphasized strong sensitivity of the threshold of instability to the More >

  • Open Access

    ARTICLE

    Marangoni-Natural Convection in Liquid Metals in the Presence of a Tilted Magnetic Field

    S. Hamimid1, A.Amroune1

    FDMP-Fluid Dynamics & Materials Processing, Vol.6, No.4, pp. 369-384, 2010, DOI:10.3970/fdmp.2010.006.369

    Abstract The Navier-Stokes and energy equations are numerically solved to investigate two-dimensional convection (originating from the combined effect of buoyancy and surface tension forces) in a liquid metal subjected to transverse magnetic fields. In particular, a laterally heated horizontal cavity with aspect ratio (height/width) =1 and Pr=0.015 is considered (typically associated with the horizontal Bridgman crystal growth process and commonly used for benchmarking purposes). The effect of a uniform magnetic field with different magnitudes and orientations on the stability of the two distinct convective solution branches (with a single-cell or two-cell pattern) of the steady-state flows More >

Displaying 141-150 on page 15 of 184. Per Page