Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (201)
  • Open Access

    ARTICLE

    Computational Studies on the Transient Electrohydrodynamics of a Liquid Drop

    Md. Abdul Halim1, Asghar Esmaeeli2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 435-460, 2013, DOI:10.3970/fdmp.2013.009.435

    Abstract This study aims to gain a detailed understanding of the transient behavior of solitary liquid drops in electric fields at finite Reynolds number. A front tracking/finite difference method, in conjunction with Taylor-Melcher leaky dielectric model, is used to solve the governing electrohydrodynamic equations. The evolution of the flow field and drop deformation is studied for a few representative fluid systems, corresponding to the different regions of the deformation-circulation map. It is shown that for the range of the physical parameters used here, the deformationtime history is governed by one time scale while the fluid flow More >

  • Open Access

    ARTICLE

    Comparison of EHD-Driven Instability of Thick and Thin Liquid Films by a Transverse Electric Field

    Payam Sharifi1, Asghar Esmaeeli2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 389-418, 2013, DOI:10.3970/fdmp.2013.009.389

    Abstract This study aims to explore the effect of liquid film thickness on the electrohydrodynamic-driven instability of the interface separating two horizontal immiscible liquid layers. The fluids are confined between two electrodes and the light and less conducting liquid is overlaid on the heavy and more conducting one. Direct Numerical Simulations (DNSs) are performed using a front tracking/finite difference scheme in conjunction with Taylor-Melcher leaky dielectric model. For the range of physical parameters used here, it is shown that for a moderately thick lower liquid layer, the interface instability leads to formation of several liquid columns… More >

  • Open Access

    ARTICLE

    Numerical Simulation of Liquid Phase Diffusion Growth of SiGe Single Crystals under Zero Gravity

    M. Sekhon1, N. Armour1, S. Dost1,2

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.4, pp. 331-351, 2013, DOI:10.3970/fdmp.2013.009.331

    Abstract Liquid Phase Diffusion (LPD) growth of SixGe1-x single crystals has been numerically simulated under zero gravity. The objective was to examine growth rate and silicon concentration distribution in the LPD grown crystals under diffusion dominated mass transport prior to the planned LPD space experiments on the International Space Station (ISS). Since we are interested in predicting growth rate and crystal composition, the gravitational fluctuation of the ISS (g-jitter) was neglected and the gravity level was taken as zero for simplicity.
    A fixed grid approach has been utilized for the simulation. An integrated top-level solver was developed… More >

  • Open Access

    ARTICLE

    Convective Film Condensation in an Inclined Channel with Porous Layer

    Lazhar Merouani1, Belkacem Zeghmati2, Azeddine Belhamri3

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.3, pp. 267-290, 2013, DOI:10.3970/fdmp.2013.009.267

    Abstract The present work is a numerical study of laminar film condensation from vapor-gas mixtures in an inclined channel with an insulated upper wall and an isothermal lower wall coated with a thin porous material. A two-dimensional model is developed using a set of complete boundary layer equations for the liquid film and the steam-air mixture while the Darcy-Brinkman-Forchheimer approach is used for the porous material. The governing equations are discretized with an implicit finite difference scheme. The resulting systems of algebraic equations are numerically solved using Gauss and Thomas algorithms. The numerical results enable to More >

  • Open Access

    ARTICLE

    An Experimental Study on Enhancing Cooling Rates of Low Thermal Conductivity Fluids Using Liquid Metals

    S.-A. B. Al Omari1,2, E. Elnajjar1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.2, pp. 91-109, 2013, DOI:10.3970/fdmp.2013.009.091

    Abstract In a previous numerical study (Al Omari, Int. Communication in Heat and Mass Transfer, 2011) the heat transfer enhancement between two immiscible liquids with clear disparity in thermal conductivity such as water and a liquid metal (attained by co- flowing them in a direct contact manner alongside each other in mini channel) was demonstrated. The present work includes preliminary experimental results that support those numerical findings. Two immiscible liquids (hot water and liquid gallium) are allowed experimentally to exchange heat (under noflow conditions) in a stationary metallic cup where they are put in direct contact.… More >

  • Open Access

    ARTICLE

    CFD Simulation of Magnetohydrodynamic Flow of a Liquid- Metal Galinstan Fluid in Circular Pipes

    E. Gedik1, H.Kurt2, Z.Recebli1

    FDMP-Fluid Dynamics & Materials Processing, Vol.9, No.1, pp. 23-33, 2013, DOI:10.3970/fdmp.2013.009.023

    Abstract In this paper, the steady, laminar, incompressible viscous flow of an electrically conducting liquid-metal fluid is investigated numerically in a circular non-conducting pipe. The considered work fluid is Galinstan (GaInSn, i.e. Gallium-Indium-Tin). Such a liquid metal is subjected to a constant pressure gradient along the axial direction and a uniform transverse magnetic field in the spanwise direction. Numerical simulations are performed by means of the Fluent commercial software (used to solve the governing three dimensional fluid dynamics and electromagnetic field partial differential equations iteratively). The magnetic field induction, B, takes values between 0 and 1.5 More >

  • Open Access

    ARTICLE

    ADVANCED SPREADERS FOR ENHANCED COOLING OF HIGH POWER CHIPS

    Mohamed S. El-Genka,b,c,∗, Amir F. Alia,c

    Frontiers in Heat and Mass Transfer, Vol.3, No.4, pp. 1-14, 2012, DOI:10.5098/hmt.v3.4.3001

    Abstract Advanced spreaders for cooling a 10 x 10 mm underlying computer chip with a central hot spot (CHS) could remove > 85 W of dissipated thermal power at junctions’ temperature < 100o C. The spreaders comprise a 1.6 - 3.2 mm thick Cu substrate and an 80-μm thick micro-porous copper (MPC) surface cooled by saturation nucleate boiling of PF-5060 dielectric liquid. Investigated are the effects of varying the heat flux at the chip’s 1 and 4 mm2 CHS and the impedance of thermal interface material (TIM) between the Cu substrate and underlying chip. Results confirmed the… More >

  • Open Access

    ARTICLE

    Cryopreservation of Cyrtopodium hatschbachii Pabst (Orchidaceae) immature seeds by encapsulation-dehydration

    MAURO RODRIGO SURENCISKI*, EDUARDO ALBERTO FLACHSLAND, GRACIELA TERADA, LUIS AMADO MROGINSKI, HEBE YOLANDA REY

    BIOCELL, Vol.36, No.1, pp. 31-36, 2012, DOI:10.32604/biocell.2012.36.031

    Abstract The aim of the present study was to investigate the efficiency of the encapsulation-dehydration technique for cryopreservation of Cyrtopodium hastchbachii Pabst seeds. Immature seeds of this species were cryopreserved by an encapsulation-dehydration technique. Seeds of five immature pods, 120 days after pollination, were encapsulated in 3% calcium alginate matrix and pretreated in liquid medium supplemented with 0.08 M sucrose (24 h), 0.15 M sucrose (24 h), 0.25 M sucrose (48 h), 0.5 M sucrose (24 h) and 0.75 M sucrose (24 h) in shaker at 60 rpm. Alginate beads were dehydrated 5 h in silicagel and More >

  • Open Access

    ARTICLE

    Use of Flow Simulation to Develop Robust Injection and Vent Schemes that Account for Process and Material Variability in Liquid Composite Molding Process

    J. Wang1, E. Andres, P. Simacek, S.G.Advani

    CMES-Computer Modeling in Engineering & Sciences, Vol.88, No.3, pp. 155-182, 2012, DOI:10.3970/cmes.2012.088.155

    Abstract In Liquid Composite Molding (LCM) processes, the process design requires an infusion and venting scheme which will saturate all the empty spaces between the fibers during mold filling resulting in a composite part without voids. However, the inherent material and process variability can change the filling patterns significantly which complicate this task. The objective of this work is to develop methodologies and tools to automate infusion process design and integrate it within the CAD design environment. The methodologies and algorithms developed examine the designed part geometry and material layups for ease of manufacturing with feasible… More >

  • Open Access

    ARTICLE

    An Experimental Study of Two-Phase Flow in Porous Media with Measurement of Relative Permeability

    N. Labed1, L. Bennamoun2, J.P. Fohr3

    FDMP-Fluid Dynamics & Materials Processing, Vol.8, No.4, pp. 423-436, 2012, DOI:10.3970/fdmp.2012.008.423

    Abstract Intrinsic and relative permeability are indispensable parameters for performing transfers in porous media. In this paper, the conception and ensuing exploitation of a new testing ground for measuring the relative permeability of water and nitrogen are presented. The experimental work was elaborated in the Laboratory of Thermal Studies in Poitiers, (France) where brick samples were used to verify the performance of the proposed testing strategy. The results prove the existence of several stages during the drainage and the imbibitions. In particular, the three stages observed for the case of gas permeability reduce to only two More >

Displaying 141-150 on page 15 of 201. Per Page