Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Application of Local MQ-DQ Method to Solve 3D Incompressible Viscous Flows with Curved Boundary

    Y.Y. Shan1, C. Shu1,2, Z.L. Lu3

    CMES-Computer Modeling in Engineering & Sciences, Vol.25, No.2, pp. 99-114, 2008, DOI:10.3970/cmes.2008.025.099

    Abstract The local multiquadric-based differential quadrature (MQ-DQ) method proposed by [Shu, Ding, and Yeo (2003)] is a natural mesh-free approach for derivative approximation, which is easy to be implemented to solve problems with curved boundary. Previously, it has been well tested for the two-dimensional (2D) case. In this work, this mesh-free method was extended to simulate fluid flow problems with curved boundary in three-dimensional (3D) space. The main concern of this work is to numerically study the performance of the 3D local MQ-DQ method and demonstrate its capability and flexibility for simulation of 3D incompressible fluid flows with curved boundary. Fractional… More >

Displaying 1-10 on page 1 of 1. Per Page