Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (303)
  • Open Access


    Model Agnostic Meta-Learning (MAML)-Based Ensemble Model for Accurate Detection of Wheat Diseases Using Vision Transformer and Graph Neural Networks

    Yasir Maqsood1, Syed Muhammad Usman1,*, Musaed Alhussein2, Khursheed Aurangzeb2,*, Shehzad Khalid3, Muhammad Zubair4

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2795-2811, 2024, DOI:10.32604/cmc.2024.049410

    Abstract Wheat is a critical crop, extensively consumed worldwide, and its production enhancement is essential to meet escalating demand. The presence of diseases like stem rust, leaf rust, yellow rust, and tan spot significantly diminishes wheat yield, making the early and precise identification of these diseases vital for effective disease management. With advancements in deep learning algorithms, researchers have proposed many methods for the automated detection of disease pathogens; however, accurately detecting multiple disease pathogens simultaneously remains a challenge. This challenge arises due to the scarcity of RGB images for multiple diseases, class imbalance in existing public datasets, and the difficulty… More >

  • Open Access


    MoBShield: A Novel XML Approach for Securing Mobile Banking

    Saeed Seraj1, Ali Safaa Sadiq1,*, Omprakash Kaiwartya1, Mohammad Aljaidi2, Alexandros Konios1, Mohammed Ali3, Mohammed Abazeed3

    CMC-Computers, Materials & Continua, Vol.79, No.2, pp. 2123-2149, 2024, DOI:10.32604/cmc.2024.048914

    Abstract Mobile banking security has witnessed significant R&D attention from both financial institutions and academia. This is due to the growing number of mobile baking applications and their reachability and usefulness to society. However, these applications are also attractive prey for cybercriminals, who use a variety of malware to steal personal banking information. Related literature in mobile banking security requires many permissions that are not necessary for the application’s intended security functionality. In this context, this paper presents a novel efficient permission identification approach for securing mobile banking (MoBShield) to detect and prevent malware. A permission-based dataset is generated for mobile… More >

  • Open Access


    Harnessing ML and GIS for Seismic Vulnerability Assessment and Risk Prioritization

    Shalu1, Twinkle Acharya1, Dhwanilnath Gharekhan1,*, Dipak Samal2

    Revue Internationale de Géomatique, Vol.33, pp. 111-134, 2024, DOI:10.32604/rig.2024.051788

    Abstract Seismic vulnerability modeling plays a crucial role in seismic risk assessment, aiding decision-makers in pinpointing areas and structures most prone to earthquake damage. While machine learning (ML) algorithms and Geographic Information Systems (GIS) have emerged as promising tools for seismic vulnerability modeling, there remains a notable gap in comprehensive geospatial studies focused on India. Previous studies in seismic vulnerability modeling have primarily focused on specific regions or countries, often overlooking the unique challenges and characteristics of India. In this study, we introduce a novel approach to seismic vulnerability modeling, leveraging ML and GIS to address these gaps. Employing Artificial Neural… More >

  • Open Access


    Sepsis Prediction Using CNNBDLSTM and Temporal Derivatives Feature Extraction in the IoT Medical Environment

    Sapiah Sakri1, Shakila Basheer1, Zuhaira Muhammad Zain1, Nurul Halimatul Asmak Ismail2,*, Dua’ Abdellatef Nassar1, Manal Abdullah Alohali1, Mais Ayman Alharaki1

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 1157-1185, 2024, DOI:10.32604/cmc.2024.048051

    Abstract Background: Sepsis, a potentially fatal inflammatory disease triggered by infection, carries significant health implications worldwide. Timely detection is crucial as sepsis can rapidly escalate if left undetected. Recent advancements in deep learning (DL) offer powerful tools to address this challenge. Aim: Thus, this study proposed a hybrid CNNBDLSTM, a combination of a convolutional neural network (CNN) with a bi-directional long short-term memory (BDLSTM) model to predict sepsis onset. Implementing the proposed model provides a robust framework that capitalizes on the complementary strengths of both architectures, resulting in more accurate and timelier predictions. Method: The sepsis prediction method proposed here utilizes… More >

  • Open Access


    An Ingenious IoT Based Crop Prediction System Using ML and EL

    Shabana Ramzan1, Yazeed Yasin Ghadi2, Hanan Aljuaid3, Aqsa Mahmood1,*, Basharat Ali4

    CMC-Computers, Materials & Continua, Vol.79, No.1, pp. 183-199, 2024, DOI:10.32604/cmc.2024.047603

    Abstract Traditional farming procedures are time-consuming and expensive as based on manual labor. Farmers have no proper knowledge to select which crop is suitable to grow according to the environmental factors and soil characteristics. This is the main reason for the low yield of crops and the economic crisis in the agricultural sector of the different countries. The use of modern technologies such as the Internet of Things (IoT), machine learning, and ensemble learning can facilitate farmers to observe different factors such as soil electrical conductivity (EC), and environmental factors like temperature to improve crop yield. These parameters play a vital… More >

  • Open Access


    Federated Machine Learning Based Fetal Health Prediction Empowered with Bio-Signal Cardiotocography

    Muhammad Umar Nasir1, Omar Kassem Khalil2, Karamath Ateeq3, Bassam SaleemAllah Almogadwy4, Muhammad Adnan Khan5, Muhammad Hasnain Azam6, Khan Muhammad Adnan7,*

    CMC-Computers, Materials & Continua, Vol.78, No.3, pp. 3303-3321, 2024, DOI:10.32604/cmc.2024.048035

    Abstract Cardiotocography measures the fetal heart rate in the fetus during pregnancy to ensure physical health because cardiotocography gives data about fetal heart rate and uterine shrinkages which is very beneficial to detect whether the fetus is normal or suspect or pathologic. Various cardiotocography measures infer wrongly and give wrong predictions because of human error. The traditional way of reading the cardiotocography measures is the time taken and belongs to numerous human errors as well. Fetal condition is very important to measure at numerous stages and give proper medications to the fetus for its well-being. In the current period Machine learning… More >

  • Open Access


    Performance Enhancement of XML Parsing Using Regression and Parallelism

    Muhammad Ali, Minhaj Ahmad Khan*

    Computer Systems Science and Engineering, Vol.48, No.2, pp. 287-303, 2024, DOI:10.32604/csse.2023.043010

    Abstract The Extensible Markup Language (XML) files, widely used for storing and exchanging information on the web require efficient parsing mechanisms to improve the performance of the applications. With the existing Document Object Model (DOM) based parsing, the performance degrades due to sequential processing and large memory requirements, thereby requiring an efficient XML parser to mitigate these issues. In this paper, we propose a Parallel XML Tree Generator (PXTG) algorithm for accelerating the parsing of XML files and a Regression-based XML Parsing Framework (RXPF) that analyzes and predicts performance through profiling, regression, and code generation for efficient parsing. The PXTG algorithm… More >

  • Open Access


    An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms

    Asma Hassan Alshehri*

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 2767-2786, 2024, DOI:10.32604/cmc.2023.046838

    Abstract Online review platforms are becoming increasingly popular, encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services. Using Sybil accounts, bot farms, and real account purchases, immoral actors demonize rivals and advertise their goods. Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years. The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones. This paper adopts a semi-supervised machine learning method to detect fake reviews on any website, among other things. Online reviews… More >

  • Open Access


    Bone marrow microRNA-34a is a good indicator for response to treatment in acute myeloid leukemia


    Oncology Research, Vol.32, No.3, pp. 577-584, 2024, DOI:10.32604/or.2023.043026

    Abstract Background: microRNA-34a (miR-34a) had been reported to have a diagnostic role in acute myeloid leukemia (AML). However, its value in the bone marrow (BM) of AML patients, in addition to its role in response to therapy is still unclear. The current study was designed to assess the diagnostic, prognostic, and predictive significance of miR-34a in the BM of AML patients. Methods: The miR-34a was assessed in BM aspirate of 82 AML patients in relation to 12 normal control subjects using qRT-PCR. The data were assessed for correlation with the relevant clinical criteria, response to therapy, disease-free survival (DFS), and overall… More >

  • Open Access


    AI-Based UAV Swarms for Monitoring and Disease Identification of Brassica Plants Using Machine Learning: A Review

    Zain Anwar Ali1,2,*, Dingnan Deng1, Muhammad Kashif Shaikh3, Raza Hasan4, Muhammad Aamir Khan2

    Computer Systems Science and Engineering, Vol.48, No.1, pp. 1-34, 2024, DOI:10.32604/csse.2023.041866

    Abstract Technological advances in unmanned aerial vehicles (UAVs) pursued by artificial intelligence (AI) are improving remote sensing applications in smart agriculture. These are valuable tools for monitoring and disease identification of plants as they can collect data with no damage and effects on plants. However, their limited carrying and battery capacities restrict their performance in larger areas. Therefore, using multiple UAVs, especially in the form of a swarm is more significant for monitoring larger areas such as crop fields and forests. The diversity of research studies necessitates a literature review for more progress and contribution in the agricultural field. In this… More >

Displaying 1-10 on page 1 of 303. Per Page