Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (17)
  • Open Access

    VIEWPOINT

    Synergy of single-cell sequencing analyses and in vivo lineage-tracing approaches: A new opportunity for stem cell biology

    YUKI MATSUSHITA, WANIDA ONO, NORIAKI ONO*

    BIOCELL, Vol.46, No.5, pp. 1157-1162, 2022, DOI:10.32604/biocell.2022.018960

    Abstract Single-cell sequencing technologies have rapidly progressed in recent years, and been applied to characterize stem cells in a number of organs. Somatic (postnatal) stem cells are generally identified using combinations of cell surface markers and transcription factors. However, it has been challenging to define micro-heterogeneity within “stem cell” populations, each of which stands at a different level of differentiation. As stem cells become defined at a single-cell level, their differentiation path becomes clearly defined. Here, this viewpoint discusses the potential synergy of single-cell sequencing analyses with in vivo lineage-tracing approaches, with an emphasis on practical considerations in stem cell biology. More >

  • Open Access

    ARTICLE

    CDK5 inhibition promotes osteoblastic differentiation of MSCs and blocks the migration of osteosarcoma MG-63 cells

    HONG FU1, HAOYU ZHAO1, YALI YANG1, SIYU WANG1, KE DUAN2,*, TAILIN GUO1,*

    BIOCELL, Vol.46, No.4, pp. 1067-1078, 2022, DOI:10.32604/biocell.2022.017435

    Abstract CDK5 belongs to the cyclin-dependent kinase family. CDK5 is multifunctional and plays an important role in neural differentiation. However, the role of CDK5 in osteoblastic differentiation remains unclear. The present study investigated functions and molecular mechanism of CDK5 in osteoblastic differentiation. It was found that, CDK5 inhibition promoted the expression of Runx2, ALP, OCN and OPN of MSCs and the mineralization of MC-3T3E1 cells and MSCs. CDK5 inhibition enhanced the development of F-actin, nuclear localization of β-catenin and YAP, as well as the expression of RMRP RNA. When F-actin was suppressed by Blebbistatin, the nuclear localization of YAP and β-catenin,… More >

  • Open Access

    ARTICLE

    Anti-inflammatory and antioxidant potential capacities of AD-MSCs and BM-MSCs in suppressing pancreatic β-cells auto-immunity and apoptosis in rats with T1DM induced model

    SHADY G. EL-SAWAH1,*, FAYEZ ALTHOBAITI2, HANAN M. RASHWAN1, ADIL ALDHAHRANI3, MARWA A. ABDEL-DAYEM4, EMAN FAYAD2, REHAB M. AMEN5, EL SHAIMAA SHABANA6, EHAB I. EL-HALLOUS7

    BIOCELL, Vol.46, No.3, pp. 745-757, 2022, DOI:10.32604/biocell.2022.017853

    Abstract Since Type 1 diabetes (T1DM) occurs when β-cells mass is reduced to less than 20% of the normal level due to autoimmune destruction of cells resulting in the inability to secrete insulin, preservation or replenishment of the functional β-cells mass has become a major therapeutic focus for this diabetic type treatment. Thus, this 4-week work plan was designed to determine which mesenchymal stem cells (MSCs) type is more appropriate to alleviate pancreatic hazards resulting from diabetes induction; via tracking a comparative study between MSCs derived from adipose tissue (AD-MSCs) and from bone marrow (BM-MSCs) in management of T1DM considering their… More >

  • Open Access

    ARTICLE

    Investigation of the antioxidant defensive role of both AD-MSCs and BM-MSCs in modulating the alteration in the oxidative stress status in various STZ-diabetic rats’ tissues

    SHADY G. EL-SAWAH1,*, FAYEZ ALTHOBAITI2, ADIL ALDHAHRANI3, EMAN FAYAD2, MARWA A. ABDEL-DAYEM4, REHAB M. AMEN5, EL SHAIMAA SHABANA6, EHAB I. EL-HALLOUS7, HANAN M. RASHWAN1

    BIOCELL, Vol.45, No.6, pp. 1561-1568, 2021, DOI:10.32604/biocell.2021.016869

    Abstract Diabetes mellitus (DM) could negatively affect patients’ health via inducing a lot of serious functional hazards in many tissues’ cells at molecular levels. Recently, many scientists had proposed stem cell therapy being an appropriate alternative treatment protocol for numerous health threatening issues including diabetes. Therefore, the current study was designed to investigate the antioxidant potentiality of two MSCs types in alleviating tissues’ oxidative stress dramatic elevation resulting as a consequence of Type 1 DM induction. In our 4 weeks study, animals were divided into four groups: control group, STZ-diabetic group (D), D+AD-MSCs group and D+BM-MSCs group. Data reported that diabetic… More >

  • Open Access

    ARTICLE

    Different sources of MSCs on pulmonary fibrosis in C57BL/6 mice

    SHUCAI WU1,#, DENGRUI LI1,#, SUMIN GUO1, LI GAO2, YONGHUI YANG1,*

    BIOCELL, Vol.45, No.2, pp. 339-344, 2021, DOI:10.32604/biocell.2021.011379

    Abstract Since stem cell therapy is the most effective treatment in the field of tissue reparation and reconstitution, the present study aimed to explore the different sources of mesenchymal stem cells (MSCs) on the different effects of pulmonary fibrosis-related cytokines in C57BL/6 mice. For reaching this goal, we isolated MSCs from umbilical cord blood and placenta and used for stem cell therapy in a mouse model of pulmonary fibrosis model. The pulmonary fibrosis model was done by injecting bleomycin into the trachea of C57BL/6 mice. Then we assessed the degree of pulmonary fibrosis in each mouse lung tissue at weeks 1,… More >

  • Open Access

    ARTICLE

    Combinatory effect of hesperetin and mesenchymal stem cells on the deteriorated lipid profile, heart and kidney functions and antioxidant activity in STZ-induced diabetic rats

    Osama M. AHMED1, Mohamed A. HASSAN2, Ablaa S. SALEH2

    BIOCELL, Vol.44, No.1, pp. 27-29, 2020, DOI:10.32604/biocell.2020.08040

    Abstract This study aimed to assess the effect of hesperetin and/or bone marrow-derived mesenchymal stem cells (BM-MSCs) on disturbed lipid profile, heart and kidney functions, oxidative stress and antioxidant defense system in streptozotocin (STZ)-induced diabetic rats. Type 1 diabetes mellitus (T1DM) was induced in male Wistar rats by injecting 40 mg/kg body weight (b.w.) STZ dissolved in citrate buffer (pH 4.5). The diabetic rats were treated with hesperetin orally administered at dose 20 mg/kg b.w., BM-MSCs intravenously injected at a dose of 1 x 106 cells/ rat/week and their combination for 6 weeks. The diabetic rats exhibited lipid abnormalities manifested by… More >

  • Open Access

    ARTICLE

    Purmorphamine Promotes Matrix Mineralization and Cytoskeletal Changes in Human Umbilical Cord Mesenchymal Stem Cells

    Syed A Jamal*

    Molecular & Cellular Biomechanics, Vol.10, No.4, pp. 267-273, 2013, DOI:10.3970/mcb.2013.010.267

    Abstract Human Umbilical Cord Mesenchymal Stem Cells (hUCMSCs) were subjected to in vitro osteogenic differentiation using a novel combination of signaling molecules including BMP-2 and purmorphamine. Differentiation outcomes were assessed by calcein staining and by microscopic examination of the cytoskeleton. Calcein staining showed appreciable degree of calcium mineralization in cell culture, and changes in the morphological attributes of differentiating cells were observed vis-a-vis the actin cytoskeleton. Finally, positive calcein staining, altered cytoskeletal profile, and stress fiber formation in treated cells demonstrated, for the first time, a potentially synergistic interplay between BMP-2 and the hedgehog agonist, purmorphamine. This study lends support to… More >

Displaying 11-20 on page 2 of 17. Per Page