Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (631)
  • Open Access

    ARTICLE

    Multi-Algorithm Machine Learning Framework for Predicting Crystal Structures of Lithium Manganese Silicate Cathodes Using DFT Data

    Muhammad Ishtiaq1, Yeon-Ju Lee2, Annabathini Geetha Bhavani3, Sung-Gyu Kang1,*, Nagireddy Gari Subba Reddy2,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.075957 - 10 February 2026

    Abstract Lithium manganese silicate (Li-Mn-Si-O) cathodes are key components of lithium-ion batteries, and their physical and mechanical properties are strongly influenced by their underlying crystal structures. In this study, a range of machine learning (ML) algorithms were developed and compared to predict the crystal systems of Li-Mn-Si-O cathode materials using density functional theory (DFT) data obtained from the Materials Project database. The dataset comprised 211 compositions characterized by key descriptors, including formation energy, energy above the hull, bandgap, atomic site number, density, and unit cell volume. These features were utilized to classify the materials into monoclinic… More >

  • Open Access

    ARTICLE

    Computational Analysis of Fracture and Surface Deformation Mechanisms in Pre-Cracked Materials under Various Indentation Conditions

    Thi-Xuyen Bui1,2, Yu-Sheng Lu1, Yu-Sheng Liao1, Te-Hua Fang1,3,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074862 - 10 February 2026

    Abstract The mechanical performance of exceedingly soft materials such as Ag is significantly influenced by various working conditions. Therefore, this study systematically investigates the effects of crack geometry, substrate crystal orientation, and indenter shape on crack propagation. The mechanical response of Ag is analyzed using the quasi-continuum (QC) method. A pre-crack with a predefined depth and angle was introduced to initiate fracture behavior. The results show that when the pre-crack height is 50 Å, the crack propagates rapidly as the imprint depth increases from 0 to 7 Å, grows steadily up to 15 Å, and then… More >

  • Open Access

    ARTICLE

    Computational Analysis of Thermal Buckling in Doubly-Curved Shells Reinforced with Origami-Inspired Auxetic Graphene Metamaterials

    Ehsan Arshid*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074898 - 29 January 2026

    Abstract In this work, a computational modelling and analysis framework is developed to investigate the thermal buckling behavior of doubly-curved composite shells reinforced with graphene-origami (G-Ori) auxetic metamaterials. A semi-analytical formulation based on the First-Order Shear Deformation Theory (FSDT) and the principle of virtual displacements is established, and closed-form solutions are derived via Navier’s method for simply supported boundary conditions. The G-Ori metamaterial reinforcements are treated as programmable constructs whose effective thermo-mechanical properties are obtained via micromechanical homogenization and incorporated into the shell model. A comprehensive parametric study examines the influence of folding geometry, dispersion arrangement, More >

  • Open Access

    ARTICLE

    Inverse Design of Composite Materials Based on Latent Space and Bayesian Optimization

    Xianrui Lyu, Xiaodan Ren*

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074388 - 29 January 2026

    Abstract Inverse design of advanced materials represents a pivotal challenge in materials science. Leveraging the latent space of Variational Autoencoders (VAEs) for material optimization has emerged as a significant advancement in the field of material inverse design. However, VAEs are inherently prone to generating blurred images, posing challenges for precise inverse design and microstructure manufacturing. While increasing the dimensionality of the VAE latent space can mitigate reconstruction blurriness to some extent, it simultaneously imposes a substantial burden on target optimization due to an excessively high search space. To address these limitations, this study adopts a Variational… More >

  • Open Access

    ARTICLE

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

    Francisco Daniel García1,2, Solange Nicole Aigner1,2, Natalia Raffaeli3, Antonio José Barotto3, Eleana Spavento3, Mariano Martín Escobar1,4, Marcela Angela Mansilla1,4, Alejandro Bacigalupe1,4,*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0181 - 23 January 2026

    Abstract This study explores the use of black soldier fly larvae protein as a bio-based adhesive to produce particleboards from sugarcane bagasse. A comprehensive evaluation was conducted, including rheological characterization of the adhesive and physical–mechanical testing of the panels according to European standards. The black soldier fly larvae-based adhesive exhibited gel-like viscoelastic behavior, rapid partial structural recovery after shear, and favorable application properties. Particleboards manufactured with this adhesive and sugarcane bagasse achieved promising mechanical performance, with modulus of rupture and modulus of elasticity values of 30.2 and 3500 MPa, respectively. Internal bond strength exceeded 0.4 MPa,… More > Graphic Abstract

    Sustainable Particleboards Based on Sugarcane Bagasse and Bonded with a Waste-Grown Black Soldier Fly Larvae Commercial Flour-Based Adhesive: Rheological, Physical, and Mechanical Properties

  • Open Access

    ARTICLE

    Evaluation of Strip-Processed Cotton Stalks as a Raw Material for Structural Panels

    Aadarsha Lamichhane1, Arun Kuttoor Vasudevan1, Ethan Dean1, Mostafa Mohammadabadi1,*, Kevin Ragon1, Ardeshir Adeli2

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0146 - 23 January 2026

    Abstract This study explores a novel method for processing cotton stalks—an abundant agricultural byproduct—into long strips that serve as sustainable raw material for engineered bio-based panels. To evaluate the effect of raw material morphology on panel’s performance, two types of cotton stalk-based panels were developed: one using long strips, maintaining fiber continuity, and the other using ground particles, representing conventional processing. A wood strand-based panel made from commercial southern yellow pine strands served as the control. All panels were bonded using phenol-formaldehyde resin and hot-pressed to a target thickness of 12.7 mm and density of 640 kg/m3.… More >

  • Open Access

    ARTICLE

    Enhancing Corn Starch-Poly(Vinyl Alcohol) and Glycerol Composite Films with Citric Acid Cross-Linking Mechanism: A Green Approach to High-Performance Packaging Materials

    Herlina Marta1, Novita Indrianti2,*, Allifiyah Josi Nur Aziza3, Enny Sholichah4, Titik Budiati3, Achmat Sarifudin5, Yana Cahyana1, Nandi Sukri1, Aldila Din Pangawikan1

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0145 - 23 January 2026

    Abstract Corn starch (CS) is a renewable, biodegradable polysaccharide valued for its film-forming ability, yet native CS films exhibit low mechanical strength, high water sensitivity, and limited thermal stability. This study improves CS-based films by blending with poly(vinyl alcohol) (PVA) or glycerol (GLY) and using citric acid (CA) as a green, non-toxic cross-linker. Composite films were prepared by casting CS–PVA or CS–GLY with CA at 0%–0.20% (w/w of starch). The influence of CA on physicochemical, mechanical, optical, thermal, and water barrier properties was evaluated. CA crosslinking markedly enhanced the tensile strength, water resistance, and thermal stability More > Graphic Abstract

    Enhancing Corn Starch-Poly(Vinyl Alcohol) and Glycerol Composite Films with Citric Acid Cross-Linking Mechanism: A Green Approach to High-Performance Packaging Materials

  • Open Access

    REVIEW

    Thermal Insulation Performance of Natural Fibre-Reinforced Composites—A Comprehensive Review

    Raviduth Ramful*

    Journal of Renewable Materials, Vol.14, No.1, 2026, DOI:10.32604/jrm.2025.02025-0116 - 23 January 2026

    Abstract Typically used thermal insulation materials such as foam insulation and fibreglass may pose notable health risks and environmental impacts thereby resulting in respiratory irritation and waste disposal issues, respectively. While these materials are affordable and display good thermal insulation, their unsustainable traits pertaining to an intensive manufacturing process and poor disposability are major concerns. Alternative insulation materials with enhanced sustainable characteristics are therefore being explored, and one type of material which has gained notable attention owing to its low carbon footprint and low thermal conductivity is natural fibre. Among the few review studies conducted on… More > Graphic Abstract

    Thermal Insulation Performance of Natural Fibre-Reinforced Composites—A Comprehensive Review

  • Open Access

    ARTICLE

    Atomistic Insights into Aluminium–Boron Nitride Nanolayered Interconnects for High-Performance VLSI Systems

    Mallikarjun P. Y.1, Rame Gowda D. N.1, Trisha J. K.1, Varshini M.1, Poornesha S. Shetty1, Mandar Jatkar1,*, Arpan Shah2

    CMC-Computers, Materials & Continua, Vol.86, No.3, 2026, DOI:10.32604/cmc.2025.072507 - 12 January 2026

    Abstract As circuit feature sizes approach the nanoscale, traditional Copper (Cu) interconnects face significant hurdles posed by rising resistance-capacitance (RC) delay, electromigration, and high power dissipation. These limitations impose constraints on the scalability and reliability of future semiconductor technologies. Our paper describes the new Vertical multilayer Aluminium Boron Nitride Nanoribbon (AlBN) interconnect structure, integrated with Density functional theory (DFT) using first-principles calculations. This study explores AlBN-based nanostructures with doping of 1Cu, 2Cu, 1Fe (Iron), and 2Fe for the application of Very Large Scale Integration (VLSI) interconnects. The AlBN structure utilized the advantages of vertical multilayer interconnects… More >

  • Open Access

    REVIEW

    Recent Efforts on the Compressive and Tensile Strength Behavior of Thermoplastic-Based Recycled Aggregate Concrete toward Sustainability in Construction Materials

    Mahmoud Alhashash1, Abdullah Alariyan2, Ameen Mokhles Youns3, Favzi Ghreivati4, Ahed Habib5,*, Maan Habib6

    Structural Durability & Health Monitoring, Vol.20, No.1, 2026, DOI:10.32604/sdhm.2025.070194 - 08 January 2026

    Abstract Concrete production often relies on natural aggregates, which can lead to resource depletion and environmental harm. In addition, improper disposal of thermoplastic waste exacerbates ecological problems. Although significant attention has recently been given to recycling various waste materials into concrete, studies specifically addressing thermoplastic recycled aggregates are still trending. This underscores the need to comprehensively review existing literature, identify research trends, and recognize gaps in understanding the mechanical performance of thermoplastic-based recycled aggregate concrete. Accordingly, this review summarizes recent investigations focused on the mechanical properties of thermoplastic-based recycled aggregate concrete, emphasizing aspects such as compressive… More >

Displaying 1-10 on page 1 of 631. Per Page