Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (471)
  • Open Access

    ARTICLE

    Finite Element Simulations on Failure Behaviors of Granular Materials with Microstructures Using a Micromechanics-Based Cosserat Elastoplastic Model

    Chenxi Xiu1,2,*, Xihua Chu2

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.3, pp. 2305-2338, 2024, DOI:10.32604/cmes.2023.030194

    Abstract This paper presents a micromechanics-based Cosserat continuum model for microstructured granular materials. By utilizing this model, the macroscopic constitutive parameters of granular materials with different microstructures are expressed as sums of microstructural information. The microstructures under consideration can be classified into three categories: a medium-dense microstructure, a dense microstructure consisting of one-sized particles, and a dense microstructure consisting of two-sized particles. Subsequently, the Cosserat elastoplastic model, along with its finite element formulation, is derived using the extended Drucker-Prager yield criteria. To investigate failure behaviors, numerical simulations of granular materials with different microstructures are conducted using the ABAQUS User Element (UEL)… More >

  • Open Access

    ARTICLE

    EXPERIMENTAL STUDY OF COEFFICIENT OF THERMAL EXPANSION OF ALIGNED GRAPHITE THERMAL INTERFACE MATERIALS

    Hsiu-Hung Chena , Yuan Zhaob, Chung-Lung Chena,*

    Frontiers in Heat and Mass Transfer, Vol.4, No.1, pp. 1-7, 2013, DOI:10.5098/hmt.v4.1.3004

    Abstract Carbon-based materials draw more and more attention from both academia and industry: its allotropes, including graphene nanoplatlets, graphite nanoplatlets and carbon nanotubes, can readily enhance thermal conductivity of thermal interface products when served as fillers. Structuraloptimization in micro/nano-scale has been investigated and expected to finely tune the coefficient of thermal expansion (CTE) of thermal interface materials (TIMs). The capability of adjusting CTE of materials greatly benefits the design of interface materials as CTE mismatch between materials may result in serious fatigue at the interface region that goes through thermal cycles. Recently, a novel nano-thermal-interface material has been developed, which is… More >

  • Open Access

    ARTICLE

    Effect of Nanomaterials Addition to Phase Change Materials on Heat Transfer in Solar Panels under Iraqi Atmospheric Conditions

    Majid Ahmed Mohammed1, Abdullah Talab Derea2, Mohammed Yaseen Lafta3, Obed Majeed Ali1, Omar Rafae Alomar4,*

    Frontiers in Heat and Mass Transfer, Vol.21, pp. 215-226, 2023, DOI:10.32604/fhmt.2023.041668

    Abstract It is common knowledge that phase-change materials are used for the purpose of thermal storage because of the characteristics that are exclusive to these materials and not found in others. These characteristics include a large capacity for absorbing heat and a large capacity for releasing heat when the phase changes; however, these materials have a low thermal conductivity. This paper presents the results of an experimental study that investigated the impact that nanoparticles of copper oxide had on reducing the temperature of solar panels. The phase change substance that was used was determined to be beeswax. The impact of adding… More >

  • Open Access

    ARTICLE

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

    Xuefeng Song*, Minjuan Sun, Juan He, Lei Wang

    Journal of Renewable Materials, Vol.11, No.12, pp. 4079-4095, 2023, DOI:10.32604/jrm.2023.028885

    Abstract The adsorption method has the advantages of low cost, high efficiency, and environmental friendliness in treating fluorinated wastewater, and the adsorbent material is the key. This study combines the inherent anion-exchange adsorption properties of layered double hydroxides (LDHs). Self-supported porous adsorbent materials loaded with AFm and AFt were prepared from a composite cementitious system consisting of calcium aluminate cement (CAC) and flue gas desulfurization gypsum (FGDG) by chemical foaming technique. The mineral composition of the adsorbent material was characterized by X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Through the static adsorption experiment, the adsorption effect of the mineral composition… More > Graphic Abstract

    Fluoride Ion Adsorption Effect and Adsorption Mechanism of Self-Supported Adsorbent Materials Based on Desulfurization Gypsum-Aluminate Cement

  • Open Access

    REVIEW

    Fluidization and Transport of Vibrated Granular Matter: A Review of Landmark and Recent Contributions

    Peter Watson1, Sebastien Vincent Bonnieu2, Marcello Lappa1,*

    FDMP-Fluid Dynamics & Materials Processing, Vol.20, No.1, pp. 1-29, 2024, DOI:10.32604/fdmp.2023.029280

    Abstract We present a short retrospective review of the existing literature about the dynamics of (dry) granular matter under the effect of vibrations. The main objective is the development of an integrated resource where vital information about past findings and recent discoveries is provided in a single treatment. Special attention is paid to those works where successful synthetic routes to as-yet unknown phenomena were identified. Such landmark results are analyzed, while smoothly blending them with a history of the field and introducing possible categorizations of the prevalent dynamics. Although no classification is perfect, and it is hard to distillate general properties… More >

  • Open Access

    ARTICLE

    Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles

    Zhimei Li1, Kuan Tian2, Keping Wang2, Zhengyi Li2, Haoli Qin1,*, Hu Li2,*

    Journal of Renewable Materials, Vol.11, No.11, pp. 3847-3865, 2023, DOI:10.32604/jrm.2023.030122

    Abstract Sustainable acquisition of bioactive compounds from biomass-based platform molecules is a green alternative for existing CO2-emitting fossil-fuel technologies. Herein, a core–shell magnetic biocarbon catalyst functionalized with sulfonic acid (Fe3O4@SiO2@chitosan-SO3H, MBC-SO3H) was prepared to be efficient for the synthesis of various N-substituted pyrroles (up to 99% yield) from bio-based hexanedione and amines under mild conditions. The abundance of Brønsted acid sites in the MBC-SO3H ensured smooth condensation of 2,5-hexanedione with a variety of amines to produce N-substituted pyrroles. The reaction was illustrated to follow the conventional PallKnorr coupling pathway, which includes three cascade reaction steps: amination, loop closure and dehydration. The… More > Graphic Abstract

    Acidic Magnetic Biocarbon-Enabled Upgrading of Biomass-Based Hexanedione into Pyrroles

  • Open Access

    ARTICLE

    Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials

    Louis F. Marie*, Karina Sałek, Tadhg S. O’Donovan

    Energy Engineering, Vol.120, No.10, pp. 2193-2209, 2023, DOI:10.32604/ee.2023.043075

    Abstract Composite thermochemical energy storage (TCES) represents an exciting field of thermal energy storage which could address the issue of seasonal variance in renewable energy supply. However, there are open questions about their performance and the root cause of some observed phenomena. Some researchers have observed the breakdown of particles in their production phase, and in their use. This study seeks to investigate the underlying cause of this breakdown. SEM and EDX analysis have been conducted on MgCl2 impregnated 13X zeolite composites of differing diameters, as well as LiX zeolite. This was done in order to study the level of impregnation… More > Graphic Abstract

    Investigation of Particle Breakdown in the Production of Composite Magnesium Chloride and Zeolite Based Thermochemical Energy Storage Materials

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization for Spatial-Varying Porous Structures

    Chengwan Zhang1, Kai Long1,*, Zhuo Chen1,2, Xiaoyu Yang1, Feiyu Lu1, Jinhua Zhang3, Zunyi Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 369-390, 2024, DOI:10.32604/cmes.2023.029876

    Abstract This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials. The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass, as well as the local volume fraction of all phases. The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function, avoiding the parameter dependence in the conventional aggregation process. Furthermore, the local volume percentage can be precisely satisfied. The effects including the global mass bound, the influence radius and local volume percentage… More >

  • Open Access

    PROCEEDINGS

    The Mechanical Property of 2D Materials and Potential Application in Gas Separation

    Dong Li1,*, Yonggang Zheng1, Hongwu Zhang1, Hongfei Ye1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09714

    Abstract The family of 2D transition-metal oxides and dichalcogenides with 1H phase (1H-MX2) has sparked great interest from the perspective of basic physics and applied science. Interestingly, their performances could be further regulated and improved through strain engineering. Effective regulation is founded on a wellunderstood mechanical performance, however, the large number of 1H-MX2 materials has not yet been revealed. Here, a general theoretical model is constructed based on the molecular mechanics, which provides an effective and rapid analytical algorithm for evaluating the mechanical properties of the entire family of 1H-MX2. The validity of the constructed model is verified by molecular dynamics… More >

  • Open Access

    PROCEEDINGS

    A Data-Fusion Method for Uncertainty Quantification of Mechanical Property of Bi-Modulus Materials: An Example of Graphite

    Liang Zhang1,*, Zigang He1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.27, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09713

    Abstract The different elastic properties of tension and compression are obvious in many engineering materials, especially new materials. Materials with this characteristic, such as graphite, ceramics, and composite materials, are called bi-modulus materials. Their mechanical properties such as Young’s modulus have randomness in tension and compression due to different porosity, microstructure, etc. To calibrate the mechanical properties of bi-modulus materials by bridging FEM simulation results and scarce experimental data, the paper presents a data-fusion computational method. The FEM simulation is implemented based on Parametric Variational Principle (PVP), while the experimental result is obtained by Digital Image Correlation (DIC) technology. To deal… More >

Displaying 21-30 on page 3 of 471. Per Page