Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (471)
  • Open Access

    PROCEEDINGS

    Reformulation of the Virtual Fields Method Based on the Variation of Elastic Energy for Hyperelastic Materials

    Mingliang Jiang1, Zhujiang Wang2,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.08949

    Abstract This work deals with the parameter identification of invariant-based hyperelastic materials using the virtual fields method (VFM). Combined with the full-field deformation data obtained from the digital image correlation (DIC), VFM has been utilized to characterize the mechanical properties of hyperelastic materials [1]. In the conventional formulation of the VFM, the calculation of the internal virtual work (IVW) needs to obtain the stress and conjugate virtual strains, which requires a lot of calculation and derivation work. In this paper, the VFM is reformulated by calculating the IVW through the variation of elastic energy, which is more concise and easier to… More >

  • Open Access

    PROCEEDINGS

    Acoustic Topology Optimization of Sound Absorbing Materials Directly from Subdivision Surfaces with IGA-FEM/BEM

    Yanming Xu1,2, Leilei Chen1,2,*, Haojie Lian3

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.26, No.1, pp. 1-1, 2023, DOI:10.32604/icces.2023.010581

    Abstract An isogeometric coupling algorithm based on the finite element method and the boundary element method (IGA-FEM/BEM) is proposed for the simulation of acoustic fluid-structure interaction and structuralacoustic topology optimization using the direct differentiation method. The geometries are constructed from triangular control meshes through Loop subdivision scheme. The effect of sound-absorbing materials on the acoustic response is characterized by acoustic impedance boundary conditions. The optimization problem is formulated in the framework of Solid Isotropic Material with Penalization methods and the sound absorption coefficients on elements are selected as design variables. Numerical examples are presented to demonstrate the validity and efficiency of… More >

  • Open Access

    PROCEEDINGS

    A Phase-Field Fracture Model for Brittle Anisotropic Materials

    Zhiheng Luo1, Lin Chen2, Nan Wang1, Bin Li1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.4, pp. 1-1, 2023, DOI:10.32604/icces.2022.08813

    Abstract Anisotropy is inherent in many materials, either because of the manufacturing process, or due to their microstructure, and can markedly influence the failure behavior. Anisotropic materials obviously possess both anisotropic elasticity and anisotropic fracture surface energy. Phase-field methods are elegant and mathematically well-grounded, and have become popular for simulating isotropic and anisotropic brittle fracture. Here, we developed a variational phase-field model for strongly anisotropic fracture, which accounts for the anisotropy both in elastic strain energy and in fracture surface energy, and the asymmetric behavior of cracks in traction and in compression. We implement numerically our higher-order phase-field model with mixed… More >

  • Open Access

    PROCEEDINGS

    Monte Carlo Simulation of Photon Transport in Composite Materials

    Ping Yang1, Pengyang Zhao1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.3, pp. 1-1, 2023, DOI:10.32604/icces.2023.010047

    Abstract Composite materials may be subjected to an extreme condition where the surface is exposed to high-energy photon radiation (e.g., laser radiation), which can cause severe damage and destruction of the structure component. How the radiation energy is deposited in the composite material can greatly influence the subsequent damage process, which may include local heating, phase transformation, heat-induced shock waves, plasticity, etc. While the interaction of high-energy photons with homogeneous materials have been well studied, it is still a challenge to model the photon transport in composite materials, which have been increasingly used in more and more structural components. In this… More >

  • Open Access

    PROCEEDINGS

    Design and Deformation Behavior of Multi-phase Mechanical Metamaterials

    Huitian Wang1, Junjie You1, Sha Yin1,*

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.010417

    Abstract Strong and tough mechanical metamaterials are highly demanded in engineering application. Nature inspired dual-phase metamaterial composites was developed and examined, by employing architectured lattice materials with different mechanical properties respectively as the constituent matrix and reinforcement phases. Then, the reinforcement phase was incorporated into the matrix phase with specific patterning. The composite metamaterials were simply fabricated using additive manufacturing. From quasistatic compression tests, the strength and toughness could be simultaneously enhanced after the addition of reinforcement phase grains. Through simulation modeling, effects of dual-phase distribution, elementary architecture, parent material and defects on mechanical properties of dual-phase mechanical metamaterials were investigated.… More >

  • Open Access

    PROCEEDINGS

    Topological Design of Negative Poisson’s Ratio Material Microstructure Under Large Deformation with a Gradient-Free Method

    Pai Liu1,*, Weida Wu1, Yangjun Luo1, Yifan Zhang1

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.25, No.2, pp. 1-1, 2023, DOI:10.32604/icces.2023.09893

    Abstract Lightweight metamaterials with negative Poisson’s ratios (NPRs) have great potential for controlling deformation, absorbing energy, etc. The topology optimization [1] technique is an effective way to design metamaterials. However, as studied in [2], the NPR metamaterial configuration obtained under small deformation assumption may not maintain the desired Poisson’s ratio under relatively large deformation conditions. This paper focuses on the large-deformation NPR metamaterial design based on a gradient-free topology optimization method, i.e. the material-field series expansion (MFSE) method [3]. The metamaterial’s performance is evaluated using the finite element method, taking into account the geometry nonlinearity. By considering the spatial correlation of… More >

  • Open Access

    REVIEW

    Development of micro/nanostructured‒based biomaterials with biomedical applications

    AFAF ALHARTHI*

    BIOCELL, Vol.47, No.8, pp. 1743-1755, 2023, DOI:10.32604/biocell.2023.027154

    Abstract Natural biomaterials are now frequently used to build biocarrier systems, which can carry medications and biomolecules to a target region and achieve a desired therapeutic effect. Biomaterials and polymers are of great importance in the synthesis of nanomaterials. The recent studies have tended to use these materials because they are easily obtained from natural sources such as fungi, algae, bacteria, and medicinal plants. They are also biodegradable, compatible with neighborhoods, and non-toxic. Natural biomaterials and polymers are chemically changed when they are linked by cross linking agents with other polymers to create scaffolds, matrices, composites, and interpenetrating polymer networks employing… More >

  • Open Access

    ARTICLE

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

    Jiahao Wang1, Jie Zhou2, Zhengping Zhao2,*, Feng Chen1, Mingqiang Zhong1

    Journal of Renewable Materials, Vol.11, No.8, pp. 3309-3332, 2023, DOI:10.32604/jrm.2023.027278

    Abstract Three-dimensional C/SiOx nanofiber anode was prepared by polydimethylsiloxane (PDMS) and polyacrylonitrile (PAN) as precursors via electrospinning and freeze-drying successfully. In contrast to conventional carbon covering Si-based anode materials, the C/SiOx structure is made up of PAN-C, a 3D carbon substance, and SiOx loading steadily on PAN-C. The PAN carbon nanofibers and loaded SiOx from pyrolyzed PDMS give increased conductivity and a stable complex structure. When employed as lithium-ion batteries (LIBs) anode materials, C/SiOx-1% composites were discovered to have an extremely high lithium storage capacity and good cycle performance. At a current density of 100 mA/g, its reversible capacity remained at… More > Graphic Abstract

    The Microparticles SiOx Loaded on PAN-C Nanofiber as Three-Dimensional Anode Material for High-Performance Lithium-Ion Batteries

  • Open Access

    ARTICLE

    New Nano Polymer Materials for Composite Exterior-Wall Coatings

    Yue Yu*

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.10, pp. 2681-2694, 2023, DOI:10.32604/fdmp.2023.028250

    Abstract A triethylenetetramine epoxy mixture was synthesized through the reaction of a low-molecular-weight liquid epoxy resin with triethylenetetramine (TETA). Then triethyltetramine (TETA) was injected dropwise into a propylene glycol methyl ether (PM) solution for chain extension reaction. A hydrophilic and flexible polyether segment was introduced into the hardener molecule. The effects of TETA/DGEPG, reaction temperature and reaction time on the epoxy conversion of polyethylene glycol diglycidyl ether (DGEPG) were studied. In addition, several alternate strategies to add epoxy resin to the high-speed dispersion machine and synthesize MEA DGEBA adduct (without catalyst and with bisphenol A diglycidyl ether epoxy resin) were compared.… More >

  • Open Access

    ARTICLE

    STUDY ON THE LIFETIME OF CATALYST IN CATALYTIC COMBUSTION FURNACE OF NATURAL GAS AND APPLICATIONS OF HEATING POTTERY

    Shihong Zhang* , Hui Yang

    Frontiers in Heat and Mass Transfer, Vol.12, pp. 1-5, 2019, DOI:10.5098/hmt.12.6

    Abstract This article discussed the lifetime of catalyst on cost effect for catalytic combustion furnace and applications of pottery heated by catalytic combustion furnace in purification water. The time of start-up process rises with the increase of the number of ignition. The catalyst sintering was remarkable. By reducing the number of ignition and adjusting the temperature rise uniformly in the furnace, the efficient utilization of thermal energy could be realized to saving production cost and extending the lifetime of catalyst. With exquisite and even-textured surface the pottery had striking purification effect on water. The water purification material of this pottery was… More >

Displaying 41-50 on page 5 of 471. Per Page