Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    VIEWPOINT

    Osteocyte pericellular and perilacunar matrices as markers of bone–implant mechanical integrity

    RéMY GAUTHIER1,*, HéLèNE FOLLET2, ANA-MARIA TRUNFIO-SFARGHIU3, DELPHINE FARLAY2, NINA ATTIK4,5, SYLVAIN MEILLE1, JéRôME CHEVALIER1, DAVID MITTON6

    BIOCELL, Vol.46, No.10, pp. 2209-2216, 2022, DOI:10.32604/biocell.2022.022290

    Abstract To develop durable bone healing strategies through improved control of bone repair, it is of critical importance to understand the mechanisms of bone mechanical integrity when in contact with biomaterials and implants. Bone mechanical integrity is defined here as the adaptation of structural properties of remodeled bone in regard to an applied mechanical loading. Accordingly, the authors present why future investigations in bone repair and regeneration should emphasize on the matrix surrounding the osteocytes. Osteocytes are mechanosensitive cells considered as the orchestrators of bone remodeling, which is the biological process involved in bone homeostasis. These bone cells are trapped in… More >

  • Open Access

    ARTICLE

    The Role of P2Y1 and P2Y2 Purinoceptors in Determining Mechanosensitivity in Connective Tissue Cells

    A. J. Banes1,2,4, A. M. Fox1, J. Qi4, B. Koller3

    Molecular & Cellular Biomechanics, Vol.3, No.4, pp. 211-211, 2006, DOI:10.32604/mcb.2006.003.211

    Abstract This article has no abstract. More >

  • Open Access

    ARTICLE

    Traction Force Measurements of Human Aortic Smooth Muscle Cells Reveal a Motor-Clutch Behavior

    Petit Claudie1, Guignandon Alain2, Avril Stéphane1,*

    Molecular & Cellular Biomechanics, Vol.16, No.2, pp. 87-108, 2019, DOI:10.32604/mcb.2019.06415

    Abstract The contractile behavior of smooth muscle cells (SMCs) in the aorta is an important determinant of growth, remodeling, and homeostasis. However, quantitative values of SMC basal tone have never been characterized precisely on individual SMCs. Therefore, to address this lack, we developed an in vitro technique based on Traction Force Microscopy (TFM). Aortic SMCs from a human lineage at low passages (4-7) were cultured 2 days in conditions promoting the development of their contractile apparatus and seeded on hydrogels of varying elastic modulus (1, 4, 12 and 25 kPa) with embedded fluorescent microspheres. After complete adhesion, SMCs were artificially detached… More >

Displaying 1-10 on page 1 of 3. Per Page