Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (251)
  • Open Access

    REVIEW

    Review of Metaheuristic Optimization Techniques for Enhancing E-Health Applications

    Qun Song1, Chao Gao1, Han Wu1, Zhiheng Rao1, Huafeng Qin1,*, Simon Fong1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-49, 2026, DOI:10.32604/cmc.2025.070918 - 09 December 2025

    Abstract Metaheuristic algorithms, renowned for strong global search capabilities, are effective tools for solving complex optimization problems and show substantial potential in e-Health applications. This review provides a systematic overview of recent advancements in metaheuristic algorithms and highlights their applications in e-Health. We selected representative algorithms published between 2019 and 2024, and quantified their influence using an entropy-weighted method based on journal impact factors and citation counts. CThe Harris Hawks Optimizer (HHO) demonstrated the highest early citation impact. The study also examined applications in disease prediction models, clinical decision support, and intelligent health monitoring. Notably, the More >

  • Open Access

    ARTICLE

    MWaOA: A Bio-Inspired Metaheuristic Algorithm for Resource Allocation in Internet of Things

    Rekha Phadke1, Abdul Lateef Haroon Phulara Shaik2, Dayanidhi Mohapatra3, Doaa Sami Khafaga4,*, Eman Abdullah Aldakheel4, N. Sathyanarayana5

    CMC-Computers, Materials & Continua, Vol.86, No.2, pp. 1-26, 2026, DOI:10.32604/cmc.2025.067564 - 09 December 2025

    Abstract Recently, the Internet of Things (IoT) technology has been utilized in a wide range of services and applications which significantly transforms digital ecosystems through seamless interconnectivity between various smart devices. Furthermore, the IoT plays a key role in multiple domains, including industrial automation, smart homes, and intelligent transportation systems. However, an increasing number of connected devices presents significant challenges related to efficient resource allocation and system responsiveness. To address these issue, this research proposes a Modified Walrus Optimization Algorithm (MWaOA) for effective resource management in smart IoT systems. In the proposed MWaOA, a crowding process… More >

  • Open Access

    ARTICLE

    Cooperative Metaheuristics with Dynamic Dimension Reduction for High-Dimensional Optimization Problems

    Junxiang Li1,2, Zhipeng Dong2, Ben Han3, Jianqiao Chen3, Xinxin Zhang1,2,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-19, 2026, DOI:10.32604/cmc.2025.070816 - 10 November 2025

    Abstract Owing to their global search capabilities and gradient-free operation, metaheuristic algorithms are widely applied to a wide range of optimization problems. However, their computational demands become prohibitive when tackling high-dimensional optimization challenges. To effectively address these challenges, this study introduces cooperative metaheuristics integrating dynamic dimension reduction (DR). Building upon particle swarm optimization (PSO) and differential evolution (DE), the proposed cooperative methods C-PSO and C-DE are developed. In the proposed methods, the modified principal components analysis (PCA) is utilized to reduce the dimension of design variables, thereby decreasing computational costs. The dynamic DR strategy implements periodic… More >

  • Open Access

    ARTICLE

    Multi-Objective Evolutionary Framework for High-Precision Community Detection in Complex Networks

    Asal Jameel Khudhair#, Amenah Dahim Abbood#,*

    CMC-Computers, Materials & Continua, Vol.86, No.1, pp. 1-31, 2026, DOI:10.32604/cmc.2025.068553 - 10 November 2025

    Abstract Community detection is one of the most fundamental applications in understanding the structure of complicated networks. Furthermore, it is an important approach to identifying closely linked clusters of nodes that may represent underlying patterns and relationships. Networking structures are highly sensitive in social networks, requiring advanced techniques to accurately identify the structure of these communities. Most conventional algorithms for detecting communities perform inadequately with complicated networks. In addition, they miss out on accurately identifying clusters. Since single-objective optimization cannot always generate accurate and comprehensive results, as multi-objective optimization can. Therefore, we utilized two objective functions… More >

  • Open Access

    ARTICLE

    Joint Estimation of Elevation and Azimuth Angles with Triple-Parallel ULAs Using Metaheuristic and Direct Search Methods

    Fawad Zaman1,#, Adeel Iqbal2,#, Bakhtiar Ali1, Abdul Khader Jilani Saudagar3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.145, No.2, pp. 2535-2550, 2025, DOI:10.32604/cmes.2025.072638 - 26 November 2025

    Abstract Accurate estimation of the Direction-of-Arrival (DoA) of incident plane waves is essential for modern wireless communication, radar, sonar, and localization systems. Precise DoA information enables adaptive beamforming, spatial filtering, and interference mitigation by steering antenna array beams toward desired sources while suppressing unwanted signals. Traditional one-dimensional Uniform Linear Arrays (ULAs) are limited to elevation angle estimation due to geometric constraints, typically within the range [0, π]. To capture full spatial characteristics in environments with multipath and angular spread, joint estimation of both elevation and azimuth angles becomes necessary. However, existing 2D and 3D array geometries… More >

  • Open Access

    ARTICLE

    Secure and Invisible Dual Watermarking for Digital Content Based on Optimized Octonion Moments and Chaotic Metaheuristics

    Ahmed El Maloufy, Mohamed Amine Tahiri, Ahmed Bencherqui, Hicham Karmouni, Mhamed Sayyouri*

    CMC-Computers, Materials & Continua, Vol.85, No.3, pp. 5789-5822, 2025, DOI:10.32604/cmc.2025.068885 - 23 October 2025

    Abstract In the current digital context, safeguarding copyright is a major issue, particularly for architectural drawings produced by students. These works are frequently the result of innovative academic thinking combining creativity and technical precision. They are particularly vulnerable to the risk of illegal reproduction when disseminated in digital format. This research suggests, for the first time, an innovative approach to copyright protection by embedding a double digital watermark to address this challenge. The solution relies on a synergistic fusion of several sophisticated methods: Krawtchouk Optimized Octonion Moments (OKOM), Quaternion Singular Value Decomposition (QSVD), and Discrete Waveform… More >

  • Open Access

    ARTICLE

    Narwhal Optimizer: A Nature-Inspired Optimization Algorithm for Solving Complex Optimization Problems

    Raja Masadeh1, Omar Almomani2,*, Abdullah Zaqebah1, Shayma Masadeh3, Kholoud Alshqurat3, Ahmad Sharieh4, Nesreen Alsharman5

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3709-3737, 2025, DOI:10.32604/cmc.2025.066797 - 23 September 2025

    Abstract This research presents a novel nature-inspired metaheuristic optimization algorithm, called the Narwhale Optimization Algorithm (NWOA). The algorithm draws inspiration from the foraging and prey-hunting strategies of narwhals, “unicorns of the sea”, particularly the use of their distinctive spiral tusks, which play significant roles in hunting, searching prey, navigation, echolocation, and complex social interaction. Particularly, the NWOA imitates the foraging strategies and techniques of narwhals when hunting for prey but focuses mainly on the cooperative and exploratory behavior shown during group hunting and in the use of their tusks in sensing and locating prey under the… More >

  • Open Access

    ARTICLE

    An Adaptive Hybrid Metaheuristic for Solving the Vehicle Routing Problem with Time Windows under Uncertainty

    Manuel J. C. S. Reis*

    CMC-Computers, Materials & Continua, Vol.85, No.2, pp. 3023-3039, 2025, DOI:10.32604/cmc.2025.066390 - 23 September 2025

    Abstract The Vehicle Routing Problem with Time Windows (VRPTW) presents a significant challenge in combinatorial optimization, especially under real-world uncertainties such as variable travel times, service durations, and dynamic customer demands. These uncertainties make traditional deterministic models inadequate, often leading to suboptimal or infeasible solutions. To address these challenges, this work proposes an adaptive hybrid metaheuristic that integrates Genetic Algorithms (GA) with Local Search (LS), while incorporating stochastic uncertainty modeling through probabilistic travel times. The proposed algorithm dynamically adjusts parameters—such as mutation rate and local search probability—based on real-time search performance. This adaptivity enhances the algorithm’s… More >

  • Open Access

    ARTICLE

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

    Anis Ben Ghorbal1,*, Azedine Grine1, Marwa M. Eid2,3,*, El-Sayed M. El-Kenawy4,5

    CMES-Computer Modeling in Engineering & Sciences, Vol.144, No.2, pp. 2001-2028, 2025, DOI:10.32604/cmes.2025.068212 - 31 August 2025

    Abstract Preterm birth remains a leading cause of neonatal complications and highlights the need for early and accurate prediction techniques to improve both fetal and maternal health outcomes. This study introduces a hybrid approach integrating Long Short-Term Memory (LSTM) networks with the Hybrid Greylag Goose and Particle Swarm Optimization (GGPSO) algorithm to optimize preterm birth classification using Electrohysterogram signals. The dataset consists of 58 samples of 1000-second-long Electrohysterogram recordings, capturing key physiological features such as contraction patterns, entropy, and statistical variations. Statistical analysis and feature selection methods are applied to identify the most relevant predictors and More > Graphic Abstract

    Greylag Goose Optimization and Deep Learning-Based Electrohysterogram Signal Analysis for Preterm Birth Risk Prediction

  • Open Access

    ARTICLE

    Differential Evolution with Improved Equilibrium Optimizer for Combined Heat and Power Economic Dispatch Problem

    Yuanfei Wei1,2, Panpan Song3, Qifang Luo3,4,*, Yongquan Zhou1,2,3,4

    CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1235-1265, 2025, DOI:10.32604/cmc.2025.066527 - 29 August 2025

    Abstract The combined heat and power economic dispatch (CHPED) problem is a highly intricate energy dispatch challenge that aims to minimize fuel costs while adhering to various constraints. This paper presents a hybrid differential evolution (DE) algorithm combined with an improved equilibrium optimizer (DE-IEO) specifically for the CHPED problem. The DE-IEO incorporates three enhancement strategies: a chaotic mechanism for initializing the population, an improved equilibrium pool strategy, and a quasi-opposite based learning mechanism. These strategies enhance the individual utilization capabilities of the equilibrium optimizer, while differential evolution boosts local exploitation and escape capabilities. The IEO enhances… More >

Displaying 1-10 on page 1 of 251. Per Page