Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (4)
  • Open Access

    ARTICLE

    Royal Crown Shaped Polarization Insensitive Perfect Metamaterial Absorber for C-, X-, and Ku-Band Applications

    Md. Salah Uddin Afsar1, Mohammad Rashed Iqbal Faruque1,*, Sabirin Abdullah1, Mohammad Tariqul Islam2

    CMC-Computers, Materials & Continua, Vol.76, No.1, pp. 455-469, 2023, DOI:10.32604/cmc.2023.036655

    Abstract This study proposed a new royal crown-shaped polarisation insensitive double negative triple band microwave range electromagnetic metamaterial absorber (MA). The primary purpose of this study is to utilise the exotic characteristics of this perfect metamaterial absorber (PMA) for microwave wireless communications. The fundamental unit cell of the proposed MA consists of two pentagonal-shaped resonators and two inverse C-shaped metallic components surrounded by a split ring resonator (SRR). The bottom thin copper deposit and upper metallic resonator surface are disjoined by an FR-4 dielectric substrate with 1.6 mm thickness. The CST MW studio, a high-frequency electromagnetic simulator has been deployed for… More >

  • Open Access

    ARTICLE

    Computational Investigation of Multiband EMNZ Metamaterial Absorber for Terahertz Applications

    Ismail Hossain1, Md Samsuzzaman2, Mohd Hafiz Baharuddin3,*, Norsuzlin Binti Mohd Sahar1, Mandeep Singh Jit Singh1, Mohammad Tariqul Islam3

    CMC-Computers, Materials & Continua, Vol.71, No.2, pp. 3905-3920, 2022, DOI:10.32604/cmc.2022.022027

    Abstract This study presents an Epsilon Mu near-zero (EMNZ) nanostructured metamaterial absorber (NMMA) for visible regime applications. The resonator and dielectric layers are made of tungsten (W) and quartz (fused), where the working band is expanded by changing the resonator layer's design. Due to perfect impedance matching with plasmonic resonance characteristics, the proposed NMMA structure is achieved an excellent absorption of 99.99% at 571 THz, 99.50% at 488.26 THz, and 99.32% at 598 THz frequencies. The absorption mechanism is demonstrated by the theory of impedance, electric field, and power loss density distributions, respectively. The geometric parameters are explored and analyzed to… More >

  • Open Access

    ARTICLE

    Polarization Insensitive Broadband Zero Indexed Nano-Meta Absorber for Optical Region Applications

    Ismail Hossain1, Md Samsuzzaman2, Ahasanul Hoque3, Mohd Hafiz Baharuddin3, Norsuzlin Binti Mohd Sahar1, Mohammad Tariqul Islam3,*

    CMC-Computers, Materials & Continua, Vol.71, No.1, pp. 993-1009, 2022, DOI:10.32604/cmc.2022.021435

    Abstract Broadband response metamaterial absorber (MMA) remains a challenge among researchers. A nanostructured new zero-indexed metamaterial (ZIM) absorber is presented in this study, constructed with a hexagonal shape resonator for optical region applications. The design consists of a resonator and dielectric layers made with tungsten and quartz (Fused). The proposed absorbent exhibits average absorption of more than 0.8972 (89.72%) within the visible wavelength of 450–600 nm and nearly perfect absorption of 0.99 (99%) at 461.61 nm. Based on computational analysis, the proposed absorber can be characterized as ZIM. The developments of ZIM absorbers have demonstrated plasmonic resonance characteristics and a perfect… More >

  • Open Access

    ARTICLE

    Soft Computing for Terahertz Metamaterial Absorber Design for Biomedical Application

    Balamati Choudhury1, Pavani Vijay Reddy1, Sanjana Bisoyi1, R. M. Jha1

    CMC-Computers, Materials & Continua, Vol.37, No.3, pp. 135-146, 2013, DOI:10.3970/cmc.2013.037.135

    Abstract The terahertz region of the electromagnetic spectrum plays a vital role in biomedical imaging because of its sensitivity to vibrational modes of biomolecules. Advances in broadband terahertz imaging have been emerging in the field of biomedical spectroscopy. Biomedical imaging is used to distinguish between the infected (cancer) and the non-infected tissue, which requires broad band and highly efficient radar absorbing material (RAM) designs (to obtain high resolution image of the tissue). In this paper, a metamaterial broadband RAM design is proposed towards biomedical spectroscopy applications in the THz region. The particle swarm optimization (PSO) algorithm is used for the design… More >

Displaying 1-10 on page 1 of 4. Per Page