Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    Computational Modeling of Dual-Phase Ceramics with Finsler-Geometric Phase Field Mechanics

    John D. Clayton1,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.120, No.2, pp. 333-350, 2019, DOI:10.32604/cmes.2019.06342

    Abstract A theory invoking concepts from differential geometry of generalized Finsler space in conjunction with diffuse interface modeling is described and implemented in finite element (FE) simulations of dual-phase polycrystalline ceramic microstructures. Order parameters accounting for fracture and other structural transformations, notably partial dislocation slip, twinning, or phase changes, are dimensionless entries of an internal state vector of generalized pseudo-Finsler space. Ceramics investigated in computations are a boron carbide-titanium diboride (B4C-TiB2) composite and a diamond-silicon carbide (C-SiC) composite. Deformation mechanisms-in addition to elasticity and cleavage fracture in grains of any phase-include restricted dislocation glide (TiB2 phase), deformation twinning (B4C and β-SiC… More >

Displaying 1-10 on page 1 of 1. Per Page