Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (24)
  • Open Access

    ARTICLE

    Primary and Secondary Flows on Unsteady MHD Free Convective Micropolar Fluid Flow Past an Inclined Plate in a Rotating System: a Finite Element Analysis

    M. D. Shamshuddin1, *, P. V. Satya Narayana2

    FDMP-Fluid Dynamics & Materials Processing, Vol.14, No.1, pp. 57-86, 2018, DOI:10.3970/fdmp.2018.014.057

    Abstract In the present paper, a numerical analysis is performed to study the primary and secondary flows of a micropolar fluid flow past an inclined plate with viscous dissipation and thermal radiation in a rotating frame. A uniform magnetic field of strength Bo is applied normal to the plane of the plate. The whole system rotates with uniform angular velocity about an axis normal to the plate. The governing partial differential equations are transformed into coupled nonlinear partial differential equations by using the appropriate dimensionless quantities. The resulting equations are then solved by the Galerkin finite More >

  • Open Access

    ARTICLE

    INFLUENCE OF CONVECTIVE BOUNDARY CONDITION ON NONLINEAR THERMAL CONVECTION FLOW OF A MICROPOLAR FLUID SATURATED POROUS MEDIUM WITH HOMOGENEOUS-HETEROGENEOUS REACTIONS

    Chetteti RamReddya,†, Teegala Pradeepaa

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-10, 2017, DOI:10.5098/hmt.8.6

    Abstract A numerical approach has been used to analyze the effects of homogeneous-heterogeneous reaction and nonlinear density temperature variation over a vertical plate in an incompressible micropolar fluid flow saturated Darcy porous medium. In addition, convective boundary condition is incorporated in a micropolar fluid model. The similarity representation for the set of partial differential equations is attained by applying Lie group transformations. The resulting non-dimensional equations are worked out numerically by spectral quasi-linearization method. Less temperature and wall couple stress coefficient, but more velocity, skin friction, species concentration, and heat transfer rate are noticed by enhancing More >

  • Open Access

    ARTICLE

    NEW SIMILARITY SOLUTION OF MICROPOLAR FLUID FLOW PROBLEM OVER AN UHSPR IN THE PRESENCE OF QUARTIC KIND OF AUTOCATALYTIC CHEMICAL REACTION

    O. K. Koriko, I. L. Animasaun*

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-13, 2017, DOI:10.5098/hmt.8.26

    Abstract The motion of air (i.e fluid) in which tiny particle rotates past a pointed surface of a rocket (as in space science), over a bonnet of a car and past a pointed surface of an aircraft is of important to experts in all these fields. Geometrically, all the domains of fluid flow in all these cases can be referred to as the upper horizontal surface of a paraboloid of revolution (uhspr). Meanwhile, the solution of the corresponding partial differential equation is an open question due to unavailability of suitable similarity variable to non-dimensionalize the angular momentum… More >

  • Open Access

    ARTICLE

    EFFECTS OF HOMOGENEOUS-HETEROGENEOUS CHEMICAL REACTION AND SLIP VELOCITY ON MHD STAGNATION FLOW OF A MICROPOLAR FLUID OVER A PERMEABLE STRETCHING/SHRINKING SURFACE EMBEDDED IN A POROUS MEDIUM

    P. Bala Anki Reddya,*, S. Suneethab

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-11, 2017, DOI:10.5098/hmt.8.24

    Abstract We report on a mathematical model for analyzing the effects of homogeneous-heterogeneous chemical reaction and slip velocity on the MHD stagnation point flow of electrically conducting micropolar fluid over a stretching/shrinking surface embedded in a porous medium. The governing boundary layer coupled partial differential equations are transformed into a system of non-linear ordinary differential equations, which are solved numerically using the MATLAB bvp4c solver. The effects of physical and fluid parameters such as the stretching parameter, micropolar parameter, permeability parameter, strength of homogeneous and heterogeneous reaction parameter on the velocity and concentration are analyzed, and More >

  • Open Access

    ARTICLE

    MICROPOLAR FLUID FLOW OVER A NONLINEAR STRETCHING CONVECTIVELY HEATED VERTICAL SURFACE IN THE PRESENCE OF CATTANEO-CHRISTOV HEAT FLUX AND VISCOUS DISSIPATION

    Machireddy Gnaneswara Reddya,*, Gorla Rama Subba Reddyb

    Frontiers in Heat and Mass Transfer, Vol.8, pp. 1-9, 2017, DOI:10.5098/hmt.8.20

    Abstract The objective of the present communication is to study the problem of micropolar fluid flow with temperature dependent thermal conductivity over a nonlinear stretching convective vertical surface in the presence of Lorentz force and viscous dissipation. Due to the nature of heat transfer in the flow past vertical surface, Cattaneo-Christov heat flux model and Joule heating effects are properly accommodated in the energy equation. The governing partial differential equations for the flow and heat transfer are converted into a set of ordinary differential equations by employing the acceptable similarity transformations. Runge-Kutta and Newton’s methods are More >

  • Open Access

    ARTICLE

    NONLINEAR CONVECTIVE TRANSPORT ALONG AN INCLINED PLATE IN NON-DARCY POROUS MEDIUM SATURATED BY A MICROPOLAR FLUID WITH CONVECTIVE BOUNDARY CONDITION

    Ch. RamReddy , P. Naveen, D. Srinivasacharya

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-10, 2017, DOI:10.5098/hmt.9.35

    Abstract The role of nonlinear variation of density with temperature (NDT) and concentration (NDC) on the free convective flow of non-Darcy micropolar fluid over an inclined plate has been studied for the first time. In addition, the modified form of thermal slip and isothermal condition is utilized to address heat transfer phenomena in nuclear plants, textile drying, and heat exchangers, etc. The respective partial differential equations and boundary conditions are cast into a sequence of the ordinary differential equation by the local non-similarity technique. The remodeled equations are simplified numerically by applying a successive linearization method More >

  • Open Access

    ARTICLE

    HEAT TRANSFER BOUNDARY LAYER FLOW OF JEFFREY’S FLUID FROM A VERTICAL ISOTHERMAL CONE IN THE PRESENCE OF MICRO-POLAR

    K. Madhavia,b,*, V. Ramachandra Prasada , N. Nagendraa , G.S.S. Rajub

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-12, 2017, DOI:10.5098/hmt.9.29

    Abstract In this article, the combined theoretical and computational study of the magneto hydrodynamic heat transfer in an electro-conductive polymer on the external surface of a vertical truncated cone under radial magnetic field is presented. Thermal and velocity (hydrodynamic) slip are considered at the vertical truncated cone surface via modified boundary conditions. The Williamson viscoelastic model is employed which is representative of certain industrial polymers. The governing partial differential equations (PDEs) are transformed into highly nonlinear, coupled, multi-degree non-similar partial differential equations consisting of the momentum and energy equations via appropriate non-similarity transformations. These transformed conservation More >

  • Open Access

    ARTICLE

    MRT-LBM SIMULATION OF NATURAL CONVECTION IN A RAYLEIGH-BENARD CAVITY WITH LINEARLY VARYING TEMPERATURES ON THE SIDES: APPLICATION TO A MICROPOLAR FLUID

    A. El Mansouria,b, M. Hasnaouia,*, A. Amahmida , Y. Dahania , M. Alouaha , S. Hasnaouia , R. Khaoulaa , M. Ouahasa, R. Bennacerb

    Frontiers in Heat and Mass Transfer, Vol.9, pp. 1-14, 2017, DOI:10.5098/hmt.9.28

    Abstract A two-dimensional numerical simulation is conducted to study natural convection flow and heat transfer characteristics in a square cavity filled with a micropolar fluid. The lower and upper walls of the cavity are respectively subject to isothermal heating and cooling while the temperatures of both vertical sides decrease linearly in the upwards direction. The Lattice-Boltzmann Method (LBM), with the multi-relaxation time (MRT) scheme for the collision process, is used to solve the problem with the objective to assess the ability and efficiency of this numerical method to describe the micropolar fluid behavior under the effect… More >

  • Open Access

    ARTICLE

    Rotational Motion of Micropolar Fluid Spheroid in Concentric Spheroidal Container

    M. Krishna Prasad1, G. Manpreet Kaur1

    FDMP-Fluid Dynamics & Materials Processing, Vol.13, No.2, pp. 107-125, 2017, DOI:10.3970/fdmp.2017.013.107

    Abstract The slow steady rotation of a micropolar fluid spheroid whose shape deviates slightly from that of a sphere in concentric spheroidal container filled with Newtonian viscous fluid is studied analytically. The boundary conditions used are the continuity of velocity and stress components, and spin vorticity relation. The torque and wall correction factor exerted on the micropolar fluid spheroid is obtained. The dependence of wall correction factor on the micropolarity parameter, spin parameter, viscosity ratio and deformation parameter is studied numerically and its variation is presented graphically. In the limiting cases, the torque acting on solid More >

  • Open Access

    ARTICLE

    CHEMICAL REACTION AND RADIATION EFFECTS ON UNSTEADY MHD MICROPOLAR FLUID FLOW OVER A VERTICAL PLATE WITH VARIABLE TEMPERATURE

    Mekonnen Shiferaw Ayano*, J. S. Mathunjwa

    Frontiers in Heat and Mass Transfer, Vol.7, pp. 1-6, 2016, DOI:10.5098/hmt.7.9

    Abstract This paper presents a study of the Magnetohydrodynamic flow of incompressible micropolar fluid past an infinite vertical porous plate with combined heat and mass transfer. The plate oscillate harmonically in its own plane and the temperature raised linearly with respect to time. Numerical calculations are carried out for different values of dimensionless parameters and an analysis of the results shown graphically and in table form. It is found that velocity and microrotation influenced appreciatively with parameters like radiation, magnetic, chemical reaction and coupling numbers. It is also noted that microrotation highly influenced by the magnetic More >

Displaying 11-20 on page 2 of 24. Per Page