Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access


    Molecular-dynamics Study on Crack Growth Behavior Relevant to Crystal Nucleation in Amorphous Metal

    R. Matsumoto1, M. Nakagaki1, A. Nakatani2, H. Kitagawa3

    CMES-Computer Modeling in Engineering & Sciences, Vol.9, No.1, pp. 75-84, 2005, DOI:10.3970/cmes.2005.009.075

    Abstract In this paper, the internal structure-changes around the crack-tip and the pertinent crack growth behavior in an amorphous metal were studied by a molecular dynamics (MD) simulation. In order to perform a large scale calculation, the domain decomposition method was used for parallel calculation. The Finnis-Sinclair potential for$\alpha$-iron was used to describe the interatomic potential. Computed results show that nano-scaled crystalline phase grows around the crack-tip. The distribution of deformation zones and deformation mechanism are significantly altered. While grains are relatively small, they are not deformed, and the most amorphous-crystal interfaces have a large strain More >

Displaying 1-10 on page 1 of 1. Per Page