Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (6)
  • Open Access


    New Hybrid EWMA Charts for Efficient Process Dispersion Monitoring with Application in Automobile Industry

    Xuechen Liu1, Majid Khan2, Zahid Rasheed3, Syed Masroor Anwar4,*, Muhammad Arslan5

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 1171-1195, 2022, DOI:10.32604/cmes.2022.019199

    Abstract The EWMA charts are the well-known memory-type charts used for monitoring the small-to-intermediate shifts in the process parameters (location and/or dispersion). The hybrid EWMA (HEWMA) charts are enhanced version of the EWMA charts, which effectively monitor the process parameters. This paper aims to develop two new uppersided HEWMA charts for monitoring shifts in process variance, i.e., HEWMA1 and HEWMA2 charts. The design structures of the proposed HEWMA1 and HEWMA2 charts are based on the concept of integrating the features of two EWMA charts. The HEWMA1 and HEWMA2 charts plotting statistics are developed using one EWMA… More >

  • Open Access


    Understanding Actin Organization in Cell Structure through Lattice Based Monte Carlo Simulations

    Kathleen Puskar1, Leonard Apeltsin2, Shlomo Ta’asan3, Russell Schwartz2, Philip R. LeDuc4

    Molecular & Cellular Biomechanics, Vol.1, No.2, pp. 123-132, 2004, DOI:10.3970/mcb.2004.001.123

    Abstract Understanding the connection between mechanics and cell structure requires the exploration of the key molecular constituents responsible for cell shape and motility. One of these molecular bridges is the cytoskeleton, which is involved with intracellular organization and mechanotransduction. In order to examine the structure in cells, we have developed a computational technique that is able to probe the self-assembly of actin filaments through a lattice based Monte Carlo method. We have modeled the polymerization of these filaments based upon the interactions of globular actin through a probabilistic model encompassing both inert and active proteins. The More >

  • Open Access


    Computational Differentiation Enabled Fourth-Order Algebraic Monte Carlo Simulations

    James D.Turner, Manoranjan Majji, John L. Junkins

    The International Conference on Computational & Experimental Engineering and Sciences, Vol.16, No.1, pp. 11-12, 2011, DOI:10.3970/icces.2011.016.011

    Abstract Modeling uncertainty for nonlinear systems is often handled by developing a mathematical model, defining suitable parameters, establishing suitable initial conditions and numerically integrating the system response in order to study the behavior of the system. The potential range of behaviors that can be realized is assessed by varying the model parameters, integrating the response, and recording the changes in the system behaviors. In theory this process is straightforward for implementing. The only potential barrier to carrying out the repeated integrations of the system dynamics is the availability of powerful computer resources that can provide the… More >

  • Open Access


    Comprehensive Investigation into the Accuracy and Applicability of Monte Carlo Simulations in Stochastic Structural Analysis

    Taicong Chen1, Haitao Ma1, Wei Gao2

    CMES-Computer Modeling in Engineering & Sciences, Vol.87, No.3, pp. 239-270, 2012, DOI:10.3970/cmes.2012.087.239

    Abstract Monte Carlo simulation method has been used extensively in probabilistic analyses of engineering systems and its popularity has been growing. While it is widely accepted that the simulation results are asymptotically accurate when the number of samples increases, certain exceptions do exist. The major objectives of this study are to reveal the conditions of the applicability of Monte Carlo method and to provide new insights into the accuracy of the simulation results in stochastic structural analysis. Firstly, a simple problem of a spring with random axial stiffness subject to a deterministic tension is investigated, using… More >

  • Open Access


    Time Variant Reliability Analysis of Nonlinear Structural Dynamical Systems using combined Monte Carlo Simulations and Asymptotic Extreme Value Theory

    B Radhika1, S S P,a1, C S Manohar1,2

    CMES-Computer Modeling in Engineering & Sciences, Vol.27, No.1&2, pp. 79-110, 2008, DOI:10.3970/cmes.2008.027.079

    Abstract Reliability of nonlinear vibrating systems under stochastic excitations is investigated using a two-stage Monte Carlo simulation strategy. For systems with white noise excitation, the governing equations of motion are interpreted as a set of Ito stochastic differential equations. It is assumed that the probability distribution of the maximum in the steady state response belongs to the basin of attraction of one of the classical asymptotic extreme value distributions. The first stage of the solution strategy consists of selection of the form of the extreme value distribution based on hypothesis tests, and the next stage involves More >

  • Open Access


    Modeling Intergranular Crack Propagation in Polycrystalline Materials

    M.A.Arafin1, J.A.Szpunar2

    CMC-Computers, Materials & Continua, Vol.14, No.2, pp. 125-140, 2009, DOI:10.3970/cmc.2009.014.125

    Abstract A novel microstructure, texture and grain boundary character based model has been proposed to simulate the intergranular crack propagation behavior in textured polycrystalline materials. The model utilizes the Voronoi algorithm and Monte Carlo simulations to construct the microstructure with desired grain shape factor, takes the texture description of the materials to assign the orientations of the grains, evaluates the grain boundary character based on the misorientation angle - axis calculated from the orientations of the neighboring grains, and takes into account the inclination of grain boundaries with respect to the external stress direction. Markov Chain More >

Displaying 1-10 on page 1 of 6. Per Page