Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (3)
  • Open Access

    ARTICLE

    Probabilistic-Ellipsoid Hybrid Reliability Multi-Material Topology Optimization Method Based on Stress Constraint

    Zibin Mao1, Qinghai Zhao1,2,*, Liang Zhang1

    CMES-Computer Modeling in Engineering & Sciences, Vol.140, No.1, pp. 757-792, 2024, DOI:10.32604/cmes.2024.048016

    Abstract This paper proposes a multi-material topology optimization method based on the hybrid reliability of the probability-ellipsoid model with stress constraint for the stochastic uncertainty and epistemic uncertainty of mechanical loads in optimization design. The probabilistic model is combined with the ellipsoidal model to describe the uncertainty of mechanical loads. The topology optimization formula is combined with the ordered solid isotropic material with penalization (ordered-SIMP) multi-material interpolation model. The stresses of all elements are integrated into a global stress measurement that approximates the maximum stress using the normalized p-norm function. Furthermore, the sequential optimization and reliability assessment (SORA) is applied to… More >

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization for Spatial-Varying Porous Structures

    Chengwan Zhang1, Kai Long1,*, Zhuo Chen1,2, Xiaoyu Yang1, Feiyu Lu1, Jinhua Zhang3, Zunyi Duan4

    CMES-Computer Modeling in Engineering & Sciences, Vol.138, No.1, pp. 369-390, 2024, DOI:10.32604/cmes.2023.029876

    Abstract This paper aims to propose a topology optimization method on generating porous structures comprising multiple materials. The mathematical optimization formulation is established under the constraints of individual volume fraction of constituent phase or total mass, as well as the local volume fraction of all phases. The original optimization problem with numerous constraints is converted into a box-constrained optimization problem by incorporating all constraints to the augmented Lagrangian function, avoiding the parameter dependence in the conventional aggregation process. Furthermore, the local volume percentage can be precisely satisfied. The effects including the global mass bound, the influence radius and local volume percentage… More >

  • Open Access

    ARTICLE

    Multi-Material Topology Optimization of Structures Using an Ordered Ersatz Material Model

    Baoshou Liu1,2, Xiaolei Yan1, Yangfan Li3, Shiwei Zhou4, Xiaodong Huang3,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.128, No.2, pp. 523-540, 2021, DOI:10.32604/cmes.2021.017211

    Abstract This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint. A single variable based on the normalized elemental density is used to overcome the occurrence of meaningless design variables and save computational cost. Different from the traditional material penalization scheme, the algorithm is established on the ordered ersatz material model, which linearly interpolates Young's modulus for relaxed design variables. To achieve a multi-material design, the multiple floating projection constraints are adopted to gradually push elemental design variables to multiple discrete values. For the convergent element-based solution, the multiple… More >

Displaying 1-10 on page 1 of 3. Per Page