Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (65)
  • Open Access

    ARTICLE

    Optimization of the Placement and Size of Photovoltaic Source

    Maawiya Ould Sidi1,*, Mustafa Mosbah2, Rabie Zine3

    CMC-Computers, Materials & Continua, Vol.74, No.1, pp. 1855-1870, 2023, DOI:10.32604/cmc.2023.030032 - 22 September 2022

    Abstract This paper presents a new optimization study of the placement and size of a photovoltaic source (PVS) in a distribution grid, based on annual records of meteorological parameters (irradiance, temperature). Based on the recorded data, the production output as well as the daily average power (24-h vector) of the PVS is extracted over the year. When a power vector is available, it can be used as an input when searching for the optimal size of the PVS. This allows to take into account the constraint of the variation of the power generated by this source More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization with Artificial Neural Network Based Robust Paddy Yield Prediction Model

    S. Muthukumaran1,*, P. Geetha2, E. Ramaraj1

    Intelligent Automation & Soft Computing, Vol.35, No.1, pp. 215-230, 2023, DOI:10.32604/iasc.2023.027449 - 06 June 2022

    Abstract Agriculture plays a vital role in the food production process that occupies nearly one-third of the total surface of the earth. Rice is propagated from the seeds of paddy and it is a stable food almost used by fifty percent of the total world population. The extensive growth of the human population alarms us to ensure food security and the country should take proper food steps to improve the yield of food grains. This paper concentrates on improving the yield of paddy by predicting the factors that influence the growth of paddy with the help… More >

  • Open Access

    ARTICLE

    MULTI-OBJECTIVE OPTIMIZATION OF DRYING ENERGY CONSUMPTION AND JET IMPINGEMENT FORCE ON A MOVING CURVED SURFACE

    Ali Chitsazana , Georg Kleppa, Mohammad Esmaeil Chitsazanb, Birgit Glasmacherc

    Frontiers in Heat and Mass Transfer, Vol.18, pp. 1-6, 2022, DOI:10.5098/hmt.18.17

    Abstract For the optimization of the impinging round jet, the pressure force coefficient and drying energy consumption on the moving curved surface are set as the objective functions to be minimized simultaneously. SHERPA search algorithm is used to search for the optimal point from multiple objective tradeoff study (Pareto Front) method. It is found that the pressure force coefficient on the impingement surface is highly dependent on the jet to surface distance and jet angle, while the drying energy consumption is highly dependent on the jet to jet spacing. Generally, the best design study during the More >

  • Open Access

    ARTICLE

    Optimum Design for the Magnification Mechanisms Employing Fuzzy Logic–ANFIS

    Ngoc Thai Huynh1, Tien V. T. Nguyen2, Quoc Manh Nguyen3,*

    CMC-Computers, Materials & Continua, Vol.73, No.3, pp. 5961-5983, 2022, DOI:10.32604/cmc.2022.029484 - 28 July 2022

    Abstract To achieve high work performance for compliant mechanisms of motion scope, continuous work condition, and high frequency, we propose a new hybrid algorithm that could be applied to multi-objective optimum design. In this investigation, we use the tools of finite element analysis (FEA) for a magnification mechanism to find out the effects of design variables on the magnification ratio of the mechanism and then select an optimal mechanism that could meet design requirements. A poly-algorithm including the Grey-Taguchi method, fuzzy logic system, and adaptive neuro-fuzzy inference system (ANFIS) algorithm, was utilized mainly in this study.… More >

  • Open Access

    ARTICLE

    Multi-Layer and Multi-Objective Optimization Design of Supporting Structure of Large-Scale Spherical Solar Concentrator for the Space Solar Power Station

    Yang Yang, Jun Hu, Lin Zhu*, Mengchen Pei

    Journal of Renewable Materials, Vol.10, No.11, pp. 2835-2849, 2022, DOI:10.32604/jrm.2022.021840 - 29 June 2022

    Abstract Space solar power station is a novel renewable energy equipment in space to provide the earth with abundant and continuous power. The Orb-shaped Membrane Energy Gathering Array, one of the alternative construction schemes in China, is promising for collecting space sunlight with a large-scale spherical concentrator. Both the structural and optical performances such as root mean square deformation, natural frequency, system mass, and sunlight blocking rate have significant influences on the system property of the concentrator. Considering the comprehensive performance of structure and optic, this paper proposes a novel mesh grid based on normal polyhedron… More > Graphic Abstract

    Multi-Layer and Multi-Objective Optimization Design of Supporting Structure of Large-Scale Spherical Solar Concentrator for the Space Solar Power Station

  • Open Access

    ARTICLE

    Maintain Optimal Configurations for Large Configurable Systems Using Multi-Objective Optimization

    Muhammad Abid Jamil1,*, Deafallah Alsadie1, Mohamed K. Nour1, Normi Sham Awang Abu Bakar2

    CMC-Computers, Materials & Continua, Vol.73, No.2, pp. 4407-4422, 2022, DOI:10.32604/cmc.2022.029096 - 16 June 2022

    Abstract To improve the maintenance and quality of software product lines, efficient configurations techniques have been proposed. Nevertheless, due to the complexity of derived and configured products in a product line, the configuration process of the software product line (SPL) becomes time-consuming and costly. Each product line consists of a various number of feature models that need to be tested. The different approaches have been presented by Search-based software engineering (SBSE) to resolve the software engineering issues into computational solutions using some metaheuristic approach. Hence, multiobjective evolutionary algorithms help to optimize the configuration process of SPL. More >

  • Open Access

    ARTICLE

    A New Approach for Structural Optimization with Application to Wind Turbine Tower

    Fugang Dong, Yuqiao Zheng*, Hao Li, Zhengwen He

    Energy Engineering, Vol.119, No.3, pp. 1017-1029, 2022, DOI:10.32604/ee.2022.020430 - 31 March 2022

    Abstract This work takes the bionic bamboo tower (BBT) of 2 MW wind turbine as the target, and the non-dominated sorting genetic algorithm (NSGA-II) is utilized to optimize its structural parameters. Specifically, the objective functions are deformation and mass. Based on the correlation analysis, the target optimization parameters were determined. Furthermore, the Kriging model of the BBT was established through the Latin Hypercube Sampling Design (LHSD). Finally, the BBT structure is optimized with multiple objectives under the constraints of strength, natural frequency, and size. The comparison shows that the optimized BBT has an advantage in the More >

  • Open Access

    ARTICLE

    Transient Simulation and Optimization of Regional Integrated Energy System

    Xueqin Tian1, Mengran Cui2, Tong Xu1, Jinfei Sun2, Xinlei Wang1, Jiangxiang Guo2, De-Gejirifu1,*, Na Wang1

    Energy Engineering, Vol.119, No.3, pp. 1031-1045, 2022, DOI:10.32604/ee.2022.015984 - 31 March 2022

    Abstract A modeling method of regional integrated energy system based on bus method and transient simulation is proposed, and the system optimization is based on the dynamic balance of supply and demand in the whole year energy supply cycle. A CCHP system of gas turbine coupled with ground source heat pump and electric refrigeration unit is constructed. The energy relationship of the system is described by bus structure, and the transient calculation model is built on TRNSYS platform. The weighted sum of annual total cost saving rate, primary energy saving rate and environmental pollutant shadow cost… More >

  • Open Access

    ARTICLE

    Multi-Objective Optimization of Energy Aware Virtual Machine Placement in Cloud Data Center

    B. Gomathi1, B. Saravana Balaji2, V. Krishna Kumar3, Mohamed Abouhawwash4,5,*, Sultan Aljahdali6, Mehedi Masud6, Nina Kuchuk7

    Intelligent Automation & Soft Computing, Vol.33, No.3, pp. 1771-1785, 2022, DOI:10.32604/iasc.2022.024052 - 24 March 2022

    Abstract Cloud computing enables cloud providers to outsource their Information Technology (IT) services from data centers in a pay-as-you-go model. However, Cloud infrastructure comprises virtualized physical resources that consume huge amount of energy and emits carbon footprints to environment. Hence, there should be focus on optimal assignment of Virtual Machines (VM) to Physical Machines (PM) to ensure the energy efficiency and service level performance. In this paper, The Pareto based Multi-Objective Particle Swarm Optimization with Composite Mutation (PSOCM) technique has been proposed to improve the energy efficiency and minimize the Service Level Agreement (SLA) violation in… More >

  • Open Access

    ARTICLE

    Crashworthiness Design and Multi-Objective Optimization for Bio-Inspired Hierarchical Thin-Walled Structures

    Shaoqiang Xu1, Weiwei Li1,*, Lin Li2, Tao Li1, Chicheng Ma1

    CMES-Computer Modeling in Engineering & Sciences, Vol.131, No.2, pp. 929-947, 2022, DOI:10.32604/cmes.2022.018964 - 14 March 2022

    Abstract Thin-walled structures have been used in many fields due to their superior mechanical properties. In this paper, two types of hierarchical multi-cell tubes, inspired by the self-similarity of Pinus sylvestris, are proposed to enhance structural energy absorption performance. The finite element models of the hierarchical structures are established to validate the crashworthiness performance under axial dynamic load. The theoretical model of the mean crushing force is also derived based on the simplified super folded element theory. The finite element results demonstrate that the energy absorption characteristics and deformation mode of the bionic hierarchical thin-walled tubes More >

Displaying 31-40 on page 4 of 65. Per Page