Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (27)
  • Open Access

    ARTICLE

    Explainable AI Based Multi-Task Learning Method for Stroke Prognosis

    Nan Ding1, Xingyu Zeng2,*, Jianping Wu3, Liutao Zhao3

    CMC-Computers, Materials & Continua, Vol.84, No.3, pp. 5299-5315, 2025, DOI:10.32604/cmc.2025.064822 - 30 July 2025

    Abstract Predicting the health status of stroke patients at different stages of the disease is a critical clinical task. The onset and development of stroke are affected by an array of factors, encompassing genetic predisposition, environmental exposure, unhealthy lifestyle habits, and existing medical conditions. Although existing machine learning-based methods for predicting stroke patients’ health status have made significant progress, limitations remain in terms of prediction accuracy, model explainability, and system optimization. This paper proposes a multi-task learning approach based on Explainable Artificial Intelligence (XAI) for predicting the health status of stroke patients. First, we design a More >

  • Open Access

    ARTICLE

    MAMGBR: Group-Buying Recommendation Model Based on Multi-Head Attention Mechanism and Multi-Task Learning

    Zongzhe Xu, Ming Yu*

    CMC-Computers, Materials & Continua, Vol.84, No.2, pp. 2805-2826, 2025, DOI:10.32604/cmc.2025.066244 - 03 July 2025

    Abstract As the group-buying model shows significant progress in attracting new users, enhancing user engagement, and increasing platform profitability, providing personalized recommendations for group-buying users has emerged as a new challenge in the field of recommendation systems. This paper introduces a group-buying recommendation model based on multi-head attention mechanisms and multi-task learning, termed the Multi-head Attention Mechanisms and Multi-task Learning Group-Buying Recommendation (MAMGBR) model, specifically designed to optimize group-buying recommendations on e-commerce platforms. The core dataset of this study comes from the Chinese maternal and infant e-commerce platform “Beibei,” encompassing approximately 430,000 successful group-buying actions and… More >

  • Open Access

    ARTICLE

    Efficient Spatiotemporal Information Utilization for Video Camouflaged Object Detection

    Dongdong Zhang, Chunping Wang, Huiying Wang, Qiang Fu*

    CMC-Computers, Materials & Continua, Vol.82, No.3, pp. 4319-4338, 2025, DOI:10.32604/cmc.2025.060653 - 06 March 2025

    Abstract Video camouflaged object detection (VCOD) has become a fundamental task in computer vision that has attracted significant attention in recent years. Unlike image camouflaged object detection (ICOD), VCOD not only requires spatial cues but also needs motion cues. Thus, effectively utilizing spatiotemporal information is crucial for generating accurate segmentation results. Current VCOD methods, which typically focus on exploring motion representation, often ineffectively integrate spatial and motion features, leading to poor performance in diverse scenarios. To address these issues, we design a novel spatiotemporal network with an encoder-decoder structure. During the encoding stage, an adjacent space-time More >

  • Open Access

    ARTICLE

    LEGF-DST: LLMs-Enhanced Graph-Fusion Dual-Stream Transformer for Fine-Grained Chinese Malicious SMS Detection

    Xin Tong1, Jingya Wang1,*, Ying Yang2, Tian Peng3, Hanming Zhai1, Guangming Ling4

    CMC-Computers, Materials & Continua, Vol.82, No.2, pp. 1901-1924, 2025, DOI:10.32604/cmc.2024.059018 - 17 February 2025

    Abstract With the widespread use of SMS (Short Message Service), the proliferation of malicious SMS has emerged as a pressing societal issue. While deep learning-based text classifiers offer promise, they often exhibit suboptimal performance in fine-grained detection tasks, primarily due to imbalanced datasets and insufficient model representation capabilities. To address this challenge, this paper proposes an LLMs-enhanced graph fusion dual-stream Transformer model for fine-grained Chinese malicious SMS detection. During the data processing stage, Large Language Models (LLMs) are employed for data augmentation, mitigating dataset imbalance. In the data input stage, both word-level and character-level features are More >

  • Open Access

    ARTICLE

    Collaborative Trajectory Planning for Stereoscopic Agricultural Multi-UAVs Driven by the Aquila Optimizer

    Xinyu Liu#, Longfei Wang#, Yuxin Ma, Peng Shao*

    CMC-Computers, Materials & Continua, Vol.82, No.1, pp. 1349-1376, 2025, DOI:10.32604/cmc.2024.058294 - 03 January 2025

    Abstract Stereoscopic agriculture, as an advanced method of agricultural production, poses new challenges for multi-task trajectory planning of unmanned aerial vehicles (UAVs). To address the need for UAVs to perform multi-task trajectory planning in stereoscopic agriculture, a multi-task trajectory planning model and algorithm (IEP-AO) that synthesizes flight safety and flight efficiency is proposed. Based on the requirements of stereoscopic agricultural geomorphological features and operational characteristics, the multi-task trajectory planning model is ensured by constructing targeted constraints at five aspects, including the path, slope, altitude, corner, energy and obstacle threat, to improve the effectiveness of the trajectory… More >

  • Open Access

    ARTICLE

    LKMT: Linguistics Knowledge-Driven Multi-Task Neural Machine Translation for Urdu and English

    Muhammad Naeem Ul Hassan1,2, Zhengtao Yu1,2,*, Jian Wang1,2, Ying Li1,2, Shengxiang Gao1,2, Shuwan Yang1,2, Cunli Mao1,2

    CMC-Computers, Materials & Continua, Vol.81, No.1, pp. 951-969, 2024, DOI:10.32604/cmc.2024.054673 - 15 October 2024

    Abstract Thanks to the strong representation capability of pre-trained language models, supervised machine translation models have achieved outstanding performance. However, the performances of these models drop sharply when the scale of the parallel training corpus is limited. Considering the pre-trained language model has a strong ability for monolingual representation, it is the key challenge for machine translation to construct the in-depth relationship between the source and target language by injecting the lexical and syntactic information into pre-trained language models. To alleviate the dependence on the parallel corpus, we propose a Linguistics Knowledge-Driven Multi-Task (LKMT) approach to… More >

  • Open Access

    ARTICLE

    IMTNet: Improved Multi-Task Copy-Move Forgery Detection Network with Feature Decoupling and Multi-Feature Pyramid

    Huan Wang1, Hong Wang1, Zhongyuan Jiang2,*, Qing Qian1, Yong Long1

    CMC-Computers, Materials & Continua, Vol.80, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.053740 - 12 September 2024

    Abstract Copy-Move Forgery Detection (CMFD) is a technique that is designed to identify image tampering and locate suspicious areas. However, the practicality of the CMFD is impeded by the scarcity of datasets, inadequate quality and quantity, and a narrow range of applicable tasks. These limitations significantly restrict the capacity and applicability of CMFD. To overcome the limitations of existing methods, a novel solution called IMTNet is proposed for CMFD by employing a feature decoupling approach. Firstly, this study formulates the objective task and network relationship as an optimization problem using transfer learning. Furthermore, it thoroughly discusses… More >

  • Open Access

    ARTICLE

    GDMNet: A Unified Multi-Task Network for Panoptic Driving Perception

    Yunxiang Liu, Haili Ma, Jianlin Zhu*, Qiangbo Zhang

    CMC-Computers, Materials & Continua, Vol.80, No.2, pp. 2963-2978, 2024, DOI:10.32604/cmc.2024.053710 - 15 August 2024

    Abstract To enhance the efficiency and accuracy of environmental perception for autonomous vehicles, we propose GDMNet, a unified multi-task perception network for autonomous driving, capable of performing drivable area segmentation, lane detection, and traffic object detection. Firstly, in the encoding stage, features are extracted, and Generalized Efficient Layer Aggregation Network (GELAN) is utilized to enhance feature extraction and gradient flow. Secondly, in the decoding stage, specialized detection heads are designed; the drivable area segmentation head employs DySample to expand feature maps, the lane detection head merges early-stage features and processes the output through the Focal Modulation More >

  • Open Access

    ARTICLE

    Exploring Multi-Task Learning for Forecasting Energy-Cost Resource Allocation in IoT-Cloud Systems

    Mohammad Aldossary1,*, Hatem A. Alharbi2, Nasir Ayub3

    CMC-Computers, Materials & Continua, Vol.79, No.3, pp. 4603-4620, 2024, DOI:10.32604/cmc.2024.050862 - 20 June 2024

    Abstract Cloud computing has become increasingly popular due to its capacity to perform computations without relying on physical infrastructure, thereby revolutionizing computer processes. However, the rising energy consumption in cloud centers poses a significant challenge, especially with the escalating energy costs. This paper tackles this issue by introducing efficient solutions for data placement and node management, with a clear emphasis on the crucial role of the Internet of Things (IoT) throughout the research process. The IoT assumes a pivotal role in this study by actively collecting real-time data from various sensors strategically positioned in and around… More >

  • Open Access

    ARTICLE

    Target Detection Algorithm in Foggy Scenes Based on Dual Subnets

    Yuecheng Yu1,*, Liming Cai1, Anqi Ning1, Jinlong Shi1, Xudong Chen2, Shixin Huang1

    CMC-Computers, Materials & Continua, Vol.78, No.2, pp. 1915-1931, 2024, DOI:10.32604/cmc.2024.046125 - 27 February 2024

    Abstract Under the influence of air humidity, dust, aerosols, etc., in real scenes, haze presents an uneven state. In this way, the image quality and contrast will decrease. In this case, It is difficult to detect the target in the image by the universal detection network. Thus, a dual subnet based on multi-task collaborative training (DSMCT) is proposed in this paper. Firstly, in the training phase, the Gated Context Aggregation Network (GCANet) is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes. In the test phase, only the… More >

Displaying 1-10 on page 1 of 27. Per Page