Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (111)
  • Open Access

    REVIEW

    Deep Learning Applied to Computational Mechanics: A Comprehensive Review, State of the Art, and the Classics

    Loc Vu-Quoc1,*, Alexander Humer2

    CMES-Computer Modeling in Engineering & Sciences, Vol.137, No.2, pp. 1069-1343, 2023, DOI:10.32604/cmes.2023.028130

    Abstract Three recent breakthroughs due to AI in arts and science serve as motivation: An award winning digital image, protein folding, fast matrix multiplication. Many recent developments in artificial neural networks, particularly deep learning (DL), applied and relevant to computational mechanics (solid, fluids, finite-element technology) are reviewed in detail. Both hybrid and pure machine learning (ML) methods are discussed. Hybrid methods combine traditional PDE discretizations with ML methods either (1) to help model complex nonlinear constitutive relations, (2) to nonlinearly reduce the model order for efficient simulation (turbulence), or (3) to accelerate the simulation by predicting… More >

  • Open Access

    ARTICLE

    INFLUENCE OF THE FLUID-WALL INTERACTION ON THE MULTISCALE FLOW THROUGH A MICRO SLIT PORE CONSIDERING THE ADSORBED LAYER-FLUID INTERFACIAL SLIPPAGE

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-6, 2019, DOI:10.5098/hmt.13.27

    Abstract A multiscale analysis is carried out for the pressure driven flow rate through a micro/nano slit pore when the adsorbed layer-fluid interfacial slippage is considered. The flow of the adsorbed layer on the channel wall is described by the flow factor approach model for nanoscale flow, and the flow of the continuum fluid intermediate between the two adsorbed layers is described by a continuum fluid model. The adsorbed layer-fluid interfacial slippage is considered, while the adsorbed layer-wall surface interfacial slippage is ignored. The weak, medium-level and strong fluid-wall interactions and the solid adsorbed layer assumption… More >

  • Open Access

    ARTICLE

    POWER LOSS IN MULTISCALE MASS TRANSFER

    Yongbin Zhang*

    Frontiers in Heat and Mass Transfer, Vol.13, pp. 1-4, 2019, DOI:10.5098/hmt.13.22

    Abstract The power loss is calculated by a multiscale approach in the pressure driven mass transfer in a micro slit pore where there are the physical adsorbed layers respectively on the coupled walls and intermediate between them is a continuum fluid flow. The flow factor approach model for nanoscale flow is taken to simulate the flow of the adsorbed layer, and conventional hydrodynamic flow theory models the continuum fluid flow. The calculation shows that the adsorbed layer on the wall surface can have a very significant effect on the power loss in this multiscale mass transfer, More >

  • Open Access

    ARTICLE

    CRITICAL MULTISCALE FLOW FOR INTERFACIAL SLIPPAGE IN MICROCHANNEL

    Zhipeng Tanga, Yongbin Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.14, pp. 1-5, 2020, DOI:10.5098/hmt.14.26

    Abstract The critical flow rate through a micro/nano slit pore for starting the adsorbed layer-fluid or adsorbed layer-wall interfacial slippage is calculated by a multiscale scheme. There are the physical adsorbed layers on the channel walls and the intermediate continuum fluid which are respectively in noncontinuum and continuum flows. The flow factor approach model for nanoscale flow is used to simulate the adsorbed layer flow, and a continuum model describes the continuum fluid flow. The boundary between the adsorbed layer and the continuum fluid or the boundary between the adsorbed layer and the channel wall are More >

  • Open Access

    ARTICLE

    MULTISCALE OR NO MULTISCALE ANALYSIS FOR MASS TRANSFER IN A MICRO/NANOCHANNEL?

    Zhipeng Tanga, Yongbin Zhangb,*

    Frontiers in Heat and Mass Transfer, Vol.15, pp. 1-6, 2020, DOI:10.5098/hmt.15.11

    Abstract The mass flow rate through a micro/nano channel is calculated by a multiscale analysis when the thickness of the adsorbed layer on the channel wall is comparable to the channel height and the interfacial slippage on the adsorbed layer-wall surface interface occurs or not. The calculation is compared with that from conventional continuum flow theory. It is found that when the ratio More >

  • Open Access

    ARTICLE

    Short-Term Prediction of Photovoltaic Power Generation Based on LMD Permutation Entropy and Singular Spectrum Analysis

    Wenchao Ma*

    Energy Engineering, Vol.120, No.7, pp. 1685-1699, 2023, DOI:10.32604/ee.2023.025404

    Abstract The power output state of photovoltaic power generation is affected by the earth's rotation and solar radiation intensity. On the one hand, its output sequence has daily periodicity; on the other hand, it has discrete randomness. With the development of new energy economy, the proportion of photovoltaic energy increased accordingly. In order to solve the problem of improving the energy conversion efficiency in the grid-connected optical network and ensure the stability of photovoltaic power generation, this paper proposes the short-term prediction of photovoltaic power generation based on the improved multi-scale permutation entropy, local mean decomposition… More >

  • Open Access

    ARTICLE

    FLOW EQUATIONS AND THEIR BORDERLINES FOR DIFFERENT REGIMES OF MASS TRANSFER

    Jian Li1,2, Yongbin Zhang1,*

    Frontiers in Heat and Mass Transfer, Vol.16, pp. 1-5, 2021, DOI:10.5098/hmt.16.21

    Abstract The paper introduces the flow equations for the fluid flows in a cylindrical tube respectively on the macroscale, multiscale and nanoscale, especially recently developed ones. It manifests that when these equations should be used in calculating the transferred mass and what should be taken into consideration when the tube inner radius is reduced to very small values. It gives an important indication on how to treat the mass transfer calculation for the tube flow on different size scales. More >

  • Open Access

    ARTICLE

    Grid Side Distributed Energy Storage Cloud Group End Region Hierarchical Time-Sharing Configuration Algorithm Based on Multi-Scale and Multi Feature Convolution Neural Network

    Wen Long*, Bin Zhu, Huaizheng Li, Yan Zhu, Zhiqiang Chen, Gang Cheng

    Energy Engineering, Vol.120, No.5, pp. 1253-1269, 2023, DOI:10.32604/ee.2023.026395

    Abstract There is instability in the distributed energy storage cloud group end region on the power grid side. In order to avoid large-scale fluctuating charging and discharging in the power grid environment and make the capacitor components show a continuous and stable charging and discharging state, a hierarchical time-sharing configuration algorithm of distributed energy storage cloud group end region on the power grid side based on multi-scale and multi feature convolution neural network is proposed. Firstly, a voltage stability analysis model based on multi-scale and multi feature convolution neural network is constructed, and the multi-scale and… More >

  • Open Access

    ARTICLE

    A Dimension-Splitting Variational Multiscale Element-Free Galerkin Method for Three-Dimensional Singularly Perturbed Convection-Diffusion Problems

    Jufeng Wang1, Yong Wu1, Ying Xu1, Fengxin Sun2,*

    CMES-Computer Modeling in Engineering & Sciences, Vol.135, No.1, pp. 341-356, 2023, DOI:10.32604/cmes.2022.023140

    Abstract By introducing the dimensional splitting (DS) method into the multiscale interpolating element-free Galerkin (VMIEFG) method, a dimension-splitting multiscale interpolating element-free Galerkin (DS-VMIEFG) method is proposed for three-dimensional (3D) singular perturbed convection-diffusion (SPCD) problems. In the DS-VMIEFG method, the 3D problem is decomposed into a series of 2D problems by the DS method, and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method. The improved interpolation-type moving least squares (IIMLS) method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system More >

  • Open Access

    ARTICLE

    A Variational Multiscale Method for Particle Dispersion Modeling in the Atmosphere

    Y. Nishio1,*, B. Janssens1, K. Limam2, J. van Beeck3

    FDMP-Fluid Dynamics & Materials Processing, Vol.19, No.3, pp. 743-753, 2023, DOI:10.32604/fdmp.2022.021848

    Abstract A LES model is proposed to predict the dispersion of particles in the atmosphere in the context of Chemical, Biological, Radiological and Nuclear (CBRN) applications. The code relies on the Finite Element Method (FEM) for both the fluid and the dispersed solid phases. Starting from the Navier-Stokes equations and a general description of the FEM strategy, the Streamline Upwind Petrov-Galerkin (SUPG) method is formulated putting some emphasis on the related assembly matrix and stabilization coefficients. Then, the Variational Multiscale Method (VMS) is presented together with a detailed illustration of its algorithm and hierarchy of computational More >

Displaying 21-30 on page 3 of 111. Per Page