Xiaoping Yang1,2,3, Jinku Qiu2,3,4, Xifa Gong5, Jin Ye5, Fei Yao5,*, Jiaqiao Chen6, Xianzan Luo6, Da Qin6
CMC-Computers, Materials & Continua, Vol.85, No.1, pp. 1515-1539, 2025, DOI:10.32604/cmc.2025.067518
- 29 August 2025
Abstract In contemporary society, rapid and accurate optical cable fault detection is of paramount importance for ensuring the stability and reliability of optical networks. The emergence of novel faults in optical networks has introduced new challenges, significantly compromising their normal operation. Machine learning has emerged as a highly promising approach. Consequently, it is imperative to develop an automated and reliable algorithm that utilizes telemetry data acquired from Optical Time-Domain Reflectometers (OTDR) to enable real-time fault detection and diagnosis in optical fibers. In this paper, we introduce a multi-scale Convolutional Neural Network–Bidirectional Long Short-Term Memory (CNN-BiLSTM) deep… More >