Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1,009)
  • Open Access

    REVIEW

    Pigeon-Inspired Optimization Algorithm: Definition, Variants, and Its Applications in Unmanned Aerial Vehicles

    Yu-Xuan Zhou1, Kai-Qing Zhou1,*, Wei-Lin Chen1, Zhou-Hua Liao1, Di-Wen Kang1,2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.075099 - 10 February 2026

    Abstract The Pigeon-Inspired Optimization (PIO) algorithm constitutes a metaheuristic method derived from the homing behaviour of pigeons. Initially formulated for three-dimensional path planning in unmanned aerial vehicles (UAVs), the algorithm has attracted considerable academic and industrial interest owing to its effective balance between exploration and exploitation, coupled with advantages in real-time performance and robustness. Nevertheless, as applications have diversified, limitations in convergence precision and a tendency toward premature convergence have become increasingly evident, highlighting a need for improvement. This review systematically outlines the developmental trajectory of the PIO algorithm, with a particular focus on its core… More >

  • Open Access

    ARTICLE

    Enhanced BEV Scene Segmentation: De-Noise Channel Attention for Resource-Constrained Environments

    Argho Dey1, Yunfei Yin1,2,*, Zheng Yuan1, Zhiwen Zeng1, Xianjian Bao3, Md Minhazul Islam1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.074122 - 10 February 2026

    Abstract Autonomous vehicles rely heavily on accurate and efficient scene segmentation for safe navigation and efficient operations. Traditional Bird’s Eye View (BEV) methods on semantic scene segmentation, which leverage multimodal sensor fusion, often struggle with noisy data and demand high-performance GPUs, leading to sensor misalignment and performance degradation. This paper introduces an Enhanced Channel Attention BEV (ECABEV), a novel approach designed to address the challenges under insufficient GPU memory conditions. ECABEV integrates camera and radar data through a de-noise enhanced channel attention mechanism, which utilizes global average and max pooling to effectively filter out noise while… More >

  • Open Access

    ARTICLE

    Scalable and Resilient AI Framework for Malware Detection in Software-Defined Internet of Things

    Maha Abdelhaq1, Ahmad Sami Al-Shamayleh2, Adnan Akhunzada3,*, Nikola Ivković4, Toobah Hasan5

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.073577 - 10 February 2026

    Abstract The rapid expansion of the Internet of Things (IoT) and Edge Artificial Intelligence (AI) has redefined automation and connectivity across modern networks. However, the heterogeneity and limited resources of IoT devices expose them to increasingly sophisticated and persistent malware attacks. These adaptive and stealthy threats can evade conventional detection, establish remote control, propagate across devices, exfiltrate sensitive data, and compromise network integrity. This study presents a Software-Defined Internet of Things (SD-IoT) control-plane-based, AI-driven framework that integrates Gated Recurrent Units (GRU) and Long Short-Term Memory (LSTM) networks for efficient detection of evolving multi-vector, malware-driven botnet attacks.… More >

  • Open Access

    ARTICLE

    Segment-Conditioned Latent-Intent Framework for Cooperative Multi-UAV Search

    Gang Hou1,#, Aifeng Liu1,#, Tao Zhao1, Wenyuan Wei2, Bo Li1, Jiancheng Liu3,*, Siwen Wei4,5,*

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.073202 - 10 February 2026

    Abstract Cooperative multi-UAV search requires jointly optimizing wide-area coverage, rapid target discovery, and endurance under sensing and motion constraints. Resolving this coupling enables scalable coordination with high data efficiency and mission reliability. We formulate this problem as a discounted Markov decision process on an occupancy grid with a cellwise Bayesian belief update, yielding a Markov state that couples agent poses with a probabilistic target field. On this belief–MDP we introduce a segment-conditioned latent-intent framework, in which a discrete intent head selects a latent skill every K steps and an intra-segment GRU policy generates per-step control conditioned on More >

  • Open Access

    ARTICLE

    Multi-Area Path Planning for Multiple Unmanned Surface Vessels

    Jianing Wu1, Yufeng Chen1,*, Li Yin1, Huajun He2, Panshuan Jin2

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072937 - 10 February 2026

    Abstract To conduct marine surveys, multiple unmanned surface vessels (Multi-USV) with different capabilities perform collaborative mapping in multiple designated areas. This paper proposes a task allocation algorithm based on integer linear programming (ILP) with flow balance constraints, ensuring the fair and efficient distribution of sub-areas among USVs and maintaining strong connectivity of assigned regions. In the established grid map, a search-based path planning algorithm is performed on the sub-areas according to the allocation scheme. It uses the greedy algorithm and the A* algorithm to achieve complete coverage of the barrier-free area and obtain an efficient trajectory More >

  • Open Access

    ARTICLE

    A Fine-Grained Recognition Model based on Discriminative Region Localization and Efficient Second-Order Feature Encoding

    Xiaorui Zhang1,2,*, Yingying Wang2, Wei Sun3, Shiyu Zhou2, Haoming Zhang4, Pengpai Wang1

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2025.072626 - 10 February 2026

    Abstract Discriminative region localization and efficient feature encoding are crucial for fine-grained object recognition. However, existing data augmentation methods struggle to accurately locate discriminative regions in complex backgrounds, small target objects, and limited training data, leading to poor recognition. Fine-grained images exhibit “small inter-class differences,” and while second-order feature encoding enhances discrimination, it often requires dual Convolutional Neural Networks (CNN), increasing training time and complexity. This study proposes a model integrating discriminative region localization and efficient second-order feature encoding. By ranking feature map channels via a fully connected layer, it selects high-importance channels to generate an More >

  • Open Access

    ARTICLE

    Development of Wave Water Simulator for Path Planning of Autonomous Robots in Constrained Environments

    Hui Chen1, Mohammed A. H. Ali1,*, Bushroa Abd Razak1, Zhenya Wang2, Yusoff Nukman1, Shikai Zhang1, Zhiwei Huang1, Ligang Yao3, Mohammad Alkhedher4

    CMC-Computers, Materials & Continua, Vol.87, No.1, 2026, DOI:10.32604/cmc.2026.065539 - 10 February 2026

    Abstract Most existing path planning approaches rely on discrete expansions or localized heuristics that can lead to extended re-planning, inefficient detours, and limited adaptability to complex obstacle distributions. These issues are particularly pronounced when navigating cluttered or large-scale environments that demand both global coverage and smooth trajectory generation. To address these challenges, this paper proposes a Wave Water Simulator (WWS) algorithm, leveraging a physically motivated wave equation to achieve inherently smooth, globally consistent path planning. In WWS, wavefront expansions naturally identify safe corridors while seamlessly avoiding local minima, and selective corridor focusing reduces computational overhead in More >

  • Open Access

    ARTICLE

    The Connection Paradox: How Social Support Facilitates Short Video Addiction and Solitary Well-Being among Older Adults in China

    Yue Cui1, Ziqing Yang2, Hao Gao1,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.072986 - 28 January 2026

    Abstract Background: In the Chinese context, the impact of short video applications on the psychological well-being of older adults is contested. While often examined through a pathological lens of addiction, this perspective may overlook paradoxical, context-dependent positive outcomes. Therefore, the main objective of this study is to challenge the traditional Compensatory Internet Use Theory by proposing and testing a chained mediation model that explores a paradoxical pathway from social support to life satisfaction via problematic social media use. Methods: Data were collected between July and August 2025 via the Credamo online survey platform, yielding 384 valid responses… More >

  • Open Access

    ARTICLE

    Effect of Virtual Reality Combined with Forest Therapy on Psychological Resilience of Submarine Personnel with Insomnia Symptoms

    Yang Deng1,#, Tong Su1,#, Bin Wu1, Li Peng2, Muyu Chen1,2,*, Liang Zhang1,*

    International Journal of Mental Health Promotion, Vol.28, No.1, 2026, DOI:10.32604/ijmhp.2025.072327 - 28 January 2026

    Abstract Background: Submarine personnel often experience insomnia and reduced psychological resilience due to extended deployments in confined, high-stress environments. Effective non-pharmacological interventions are needed to improve sleep quality and resilience in this population. This study aimed to investigate the effect of virtual reality (VR) combined with forest therapy interventions on psychological resilience and sleep quality among submarine personnel with insomnia symptoms. Methods: Using convenience sampling, 92 submarine personnel with insomnia symptoms undergoing recuperation at a PLA sanatorium between July 2023 and May 2025 were randomly allocated to experimental and control groups (n = 46 each). The control group… More >

  • Open Access

    ARTICLE

    Bias Calibration under Constrained Communication Using Modified Kalman Filter: Algorithm Design and Application to Gyroscope Parameter Error Calibration

    Qi Li, Yifan Wang*, Yuxi Liu, Xingjing She, Yixuan Wu

    CMES-Computer Modeling in Engineering & Sciences, Vol.146, No.1, 2026, DOI:10.32604/cmes.2025.074066 - 29 January 2026

    Abstract In data communication, limited communication resources often lead to measurement bias, which adversely affects subsequent system estimation if not effectively handled. This paper proposes a novel bias calibration algorithm under communication constraints to achieve accurate system states of the interested system. An output-based event-triggered scheme is first employed to alleviate transmission burden. Accounting for the limited-communication-induced measurement bias, a novel bias calibration algorithm following the Kalman filtering line is developed to restrain the effect of the measurement bias on system estimation, thereby achieving accurate system state estimates. Subsequently, the Field Programmable Gate Array (FPGA) implementation More >

Displaying 1-10 on page 1 of 1009. Per Page