Home / Advanced Search

  • Title/Keywords

  • Author/Affliations

  • Journal

  • Article Type

  • Start Year

  • End Year

Update SearchingClear
  • Articles
  • Online
Search Results (1)
  • Open Access

    ARTICLE

    A Lattice Statics-Based Tangent-Stiffness Finite Element Method

    Peter W. Chung1, Raju R. Namburu2, Brian J. Henz3

    CMES-Computer Modeling in Engineering & Sciences, Vol.5, No.1, pp. 45-62, 2004, DOI:10.3970/cmes.2004.005.045

    Abstract A method is developed based on an additive modification to the first Lagrangian elasticity tensor to make the finite element method for hyperelasticity viable at the atomic length scale in the context of lattice statics. Through the definition of an overlap region, the close-ranged atomic interaction energies are consistently summed over the boundary of each finite element. These energies are subsequently used to additively modify the conventional material property tensor that comes from the second derivative of the stored energy function. The summation over element boundaries, as opposed to atom clusters, allows the mesh and nodes to be defined independently… More >

Displaying 1-10 on page 1 of 1. Per Page